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The derivation of structural characteristics of a compound of unknown structure from its spectral data is a central
procedure for modern structure elucidation. Computer searching in spectral libraries of fully-assigned 13C NMR spectra of
substructures or full structures is an essential part of structure elucidation and has been widely applied because this type of
spectra reflects the nature of the skeletal backbone of an organic compound, information not as readily available by other
spectroscopic techniques [1]. In this paper we describe an extensive test of a previously developed method for interpretive
search in spectral libraries of fully-assigned 13C NMR spectra [2]. The method is implemented into a Windows-based user-
friendly program, called Infer C NMR.

The program input consists of the 13C NMR spectrum of the unknown compound (chemical shift and multiplicity of
each signal) and molecular formula. The search algorithm retrieves a list of connected substructures from the reference
compounds in such a way that only atoms with matched signals are included into the inferred substructures. The substructures
are explicitly defined in terms of atom type, hydrogen multiplicity, and bond type. They are presented embedded into
the reference structures and are sorted according to their reliability (estimation of their correctness, usually called  accuracy).
This accuracy is calculated by a multivariate function that was obtained in advance by comprehensive statistics. The parameters
that restrict the search algorithm are the tolerance of signal matching (Tol) in ppm and the minimum number of carbon atoms
in the inferred (retrieved) substructures (m.n.c.); the latter is set to six for this study.

Although our program for interpretive library search is intended to serve as a useful stand-alone application for
the spectroscopist, its output can be sent as input to a computer-enhanced structure elucidation system, such as SESAMI [3].
In this mode, one or more of the retrieved substructures act as constraints on the structure generation process, serving to reduce
the number of plausible alternative structures that are presented to the chemist by the structure generator. The greater the number
and information content of the constraints, the greater the efficiency of the structure generator and the fewer the structures
produced. It is important to recognize that if a substructure predicted as present is handed to the structure generator, every
structure output will contain that substructure. Thus, if even only one of the retrieved substructures used as constraints is
incorrect, every structure produced by structure generator will be invalid (the worst scenario) or no output structures will be
generated because the constraints contradict each other or other spectral data (a better scenario). That is why the output from
the interpretive 13C NMR library search must have two very important features: high information content and high reliability.

As described in a previous paper [2], the accuracy function was tested with a large validation set of nearly 12,740
spectra by leave-one-out cross-validation. These spectra were part of the library and some of them are not natural compounds
but smaller ones produced by chemical synthesis. That is why the present test gives a better estimation of real-world capabilities
of the interpretive library search.

One hundred and four 13C NMR spectra of compounds isolated from plants and published in Phytochemistry (year 2002,
volumes 58–59) were searched in a library of 38 225 fully-assigned 13C NMR spectra. Four spectra retrieved no substructures.
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TABLE 1. Estimation of Substructure Accuracy

Threshold accuracy, % N.a.s. N.c.s. N.i.s. Estimated accuracy, % 

with 100 spectra from Phytochemistry (year 2002, vols. 58–59) 
90 
95 
99 

24 131 
16 609 
7969 

22 482 
15 910 
7868 

1649 
699 
101 

93.2 
95.8 
98.7 

with 10 spectra taken from [4–8] 
90 
95 
99 

3214 
2252 
1086 

2923 
2172 
1084 

291 
80 
2 

91.0 
96.5 
99.8 

 ______
N.a.s.: number of all substructures predicted with an accuracy higher than given threshold; N.c.s. and N.i.s.: number of correct
and incorrect substructures, respectively.

The remaining 100 spectra predicted from 2 to 7518 substructures (874 on average) with the accuracy of the first ranked
substructure ranging from 77.2% to 100% (97.0% on average). The first ranked substructure (it is with the highest accuracy)
is usually used by structure elucidation; in 79 of cases it was correct. The 21 incorrect first substructures were predicted with
accuracy ranging from 77.2% to 96.1% (89.5% on average), and the 79 correct first substructures were predicted with accuracy
ranging from 89.0 to 100% (99.0% on average); the accuracy intervals for both classes – that of correct and that of incorrect
first substructures – overlap each other. But if an accuracy of 97% is set as a threshold value, no one substructure ranked as
first would be incorrect. In this case, 72 of the correct predicted first substructures have an accuracy higher than this threshold,
which gives a 91.1% (=72/79) recall of the correct first substructures.

For the estimation of substructure accuracy, the retrieved substructures in all 100 output lists were processed.
The estimate is calculated as the number of correct substructures as percent of all substructures that have an accuracy higher
than a given threshold value. The estimates are listed for threshold values of 90%, 95%, and 99% in the last column of Table 1. As
can be seen, the estimates are close to the corresponding threshold values (compare the first and last columns). This means that
the reliability function can be used when the method is applied to structure elucidation of natural compounds. Additionally,
Table 1 as a whole casts a glance at the meaning of the substructures accuracy.

As we started a collaboration with one of the coauthors (P.B.), who has practical experience for isolation of plant
compounds and their structure elucidation, we additionally composed a small validation set of spectra of 10 compounds
isolated by P.B. [4–8]. These ten compounds were isolated from plants and are suitable for checking the efficiency of
the interpretive search. The corresponding estimation of accuracy with these ten spectra is given in Table 1. The estimates are
very close to the corresponding thresholds and even exceed the thresholds.

The ten test spectra predicted from 154 to 5878 substructures (1720 in average), with the accuracy of the first ranked
substructure ranging from 95.5 to 100% (98.8% in average). Only in one of the cases is the first substructure incorrect; its
accuracy is 95.5%, below the 97% threshold discussed above. The remaining nine correct first substructures were predicted
with accuracy ranging from 97.1 to 100.0% (99.1% in average); then the accuracy of all correct first substructures exceed
the 97% threshold, i.e., we have 100% recall.

The information content of retrieved substructures can be estimated by their efficiency in the structure generation
process when they are entered as GOODLIST fragments. By “efficiency” here is meant the reduction of the number of plausible
structures that are the output of the generator. Schriber and Pretsch revealed some common regularities for that type of application
[9]. For example, a good-list fragment containing a less frequent element is more efficient than another one with an element of
higher occurrence [9], but it is obvious that the most trivial one – the size of the fragment – is the most important factor for
structure generator efficiency.

The test compound structures are given together with the first inferred substructures in Fig. 1; the latter are represented
embedded into the corresponding reference compound structure. The size of the ten query structures (calculated as the number
of heavy atoms) ranges from 25 to 43 (34 on average), and that of the ten generated first substructures from 6 to 20 (9 on average).
The size of the nine correct inferred first substructures varies from 17 to 56% of that of the corresponding ‘unknown’ structure.
This constitutes a large amount of structural information; moreover, in some cases the oxygen atoms in the substructure
increase its information content [9], as is the case in two-third of the correct substructures.
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A thorough look at the retrieved substructures reveals some specifics of the interpretive library search. First, if a side
chain is present in the ‘unknown’ structure, this molecular part is inferred as a substructure with a high reliability, as is the case
here with scutalpins A and E (2-methylbutanoic ester moiety) and splenolides A and B and splendidin (3-furanyl moiety).
Second, as the algorithm expands the substructure within the magnetically nonequivalent reference structure�s atoms,
the inferred substructure with the scutorientalin E spectrum has a ‘half’ benzene ring. Nevertheless, an experienced chemist
will deduce that the inferred substructure is a cinnamic ester moiety. Third, if the reference and unknown compounds are

2: R = COCH3; 4: R = CH3, R1 = H; 5: R = H, R1 = CH3; 6: R = COCH(CH3)CH2CH3
7: R = R1 = H; 8: R = OH, R1 = H; 9: R = H, R1 = OAc; 10: R = R1 = OAc
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Fig. 1. Independent evaluation set results. In row (A) the so-called ‘unknown’ structures are shown; for them the compound
name and spectrum source are given. In rows (B) are shown the corresponding substructure generated with highest precision,
embedded into the reference structure (bold bonds); for them the precision and correctness (Y/N) are given. Compounds:
scutalpin E  (1) [4], scutalpin F  (2) [4], scutorientalin E (3) [5], formyl methyl ursolate (4) [6], formyl methyl oleanolate
(5) [6], scutalpin A (6) [7], salviarin (7) [8], splenolide A (8) [8], splenolide B (9) [8], and splendidin (10) [8].
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similar in structure, the inferred substructure is large. This result is encountered for formyl methyl oleanolate – the inferred
substructure has 20 heavy atoms, which constitute 56% of all the query structure�s atoms. As can be seen, the query and
reference structure differ only at two sites whose surrounding is excluded from the reference, thus remaining the atoms of the
retrieved substructure.

The test with 100 spectra allows more reliable statistics to be obtained. Altogether, there were 87354 substructures
retrieved by these 100 search sessions; 37488 (43%) of the substructures are correct. The size of all retrieved substructures
varies from 6 to 42 (9.2 in average) and that of the correct ones also from 6 to 42 (but 8.8 on average). The correlation
coefficient between the accuracy and size of the correct substructures is –0.08054 which is statistically significant:
tkr = |–15.64| > 2.58 = t(0.01, 37486). That means that, on average, the higher the accuracy of the correct substructure, the smaller
its size, thus indicating an adverse relation between them. The same relation is confirmed by the comparison of both average
values (9.2 and 8.8) mentioned above. Despite this, the size of the 79 correct inferred first substructures – that have the highest
precision – varies from 14 to 74% (33% on average) of that of the corresponding ‘unknown’ structure.

As a whole, these results turned out to be very satisfactory. They proved that the interpretive library search in a large
database of fully-assigned 13C NMR spectra of organic compounds can be used for structure elucidation of natural compounds.
The designed reliability function for ranking the retrieved substructures performs pretty well, giving at first places reliable and
informative substructures.

The program and the database could be freely downloaded from: http://kosnos.com/spectroscopy/iris/.
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