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ABSTRACT: INFERCNMR is an automated 13C NMR spec-
trum interpretation aid for use either as a stand-alone program or as
a component of a comprehensive, computer-based system for the
characterization of chemical structure. The program is an
interpretive library search which requires a database of assigned
13C NMR spectra. An interpretive library search does not require
overall structural similarity between an unknown and a library entry
in order to retrieve a substructure common to both. Input consists of the chemical shift and one-bond proton-carbon multiplicity of each
signal in the spectrum, and the molecular formula of the unknown. Program output is one or more substructures predicted to be present
in the unknown, each of which is assigned an estimated prediction accuracy.

■ INTRODUCTION
The reduction of the spectral properties of a compound of
unknown structure to their structural implications is a central
component in modern structure elucidation. Although experienced
spectroscopists and chemists are skilled in the interpretation of
spectral data, considerable effort in recent years has been devoted
to the development of computer software to serve as a competent
“stand-in” for these scientists.1−6 The increasing demand in solv-
ing structure elucidation problems and the availability of large,
information-rich libraries of spectral data served as powerful incen-
tives for such efforts.

13C NMR spectrometry in particular has received consid-
erable attention because of its power as a probe of the skeletal
backbone of an organic compound, information not as readily
accessible by other spectral methods. Current instrumentation
is at an advanced state of development and routinely produces
well resolved carbon signals, even in the case of complex
molecular structures.
A variety of techniques have been utilized in developing

computer-based programs for the interpretation of the spec-
troscopic data commonly used in organic chemistry: rule-based
systems,7−9 pattern recognition10−17 and library search.18−26

However, the boundaries between these classes are not always
sharp. Rule-based systems rely on a knowledge base for the
interpretation of the spectral data, e.g., a hierarchical set of
rules, which could, but need not be derived from a spectral
library. In contrast, pattern recognition programs and library
search routines each require an appropriately constituted
reference spectral library. In general, rule-based systems and
pattern recognition reveal only those structural features for
which they are explicitly programmed. However, library search
systems can, but need not require preselection of substructures
to be predicted.
In the application of the library search to 13C NMR spectra,

the database is a library of assigned spectra, including both
spectral and structural information. The library search at its
core is a spectrum matching procedure. Matched signals must
be within an established tolerance and are usually required to

be of the same multiplicity. The library search can be con-
ducted in one of two ways. In the similarity library search, the
spectrum of the unknown is compared to each of the entries in a
reference library of assigned 13C NMR spectra. The search
retrieves spectra from the reference library which are “similar”
overall to that of the unknown, as judged by the applied similarity
measures. Operating on the premise that compounds with similar
spectra are likely to be structurally similar, the similarity search
may reveal the class of structure to which the unknown belongs,
for example, steroid and nucleoside, and possibly more detailed
structural information.19 If a specific substructure is found to be
present in many or all of the retrieved structures, its presence in
the unknown may be inferred.26

Overall similarity between an unknown spectrum and
reference spectrum is a requirement of the similarity library
search. In contrast, overall similarity between the spectrum of
the unknown and that of a reference compound is not a
requirement of the interpretive library search. The interpretive
library search is basically a subspectrum matching procedure. It
serves to retrieve substructures from the reference compounds of
a library of assigned 13C NMR spectra which are predicted to
be present in the unknown. The method takes advantage of the
fact that each signal of a 13C NMR spectrum contains
information about the chemical environment of a single carbon
atom (or atoms belonging to the same symmetry class). As a
consequence, correlations between 13C NMR subspectra and
substructures can be more informative than those derived from
other spectroscopic methods. The procedure is based on the
premise that if an unknown and a reference library compound
share a subspectrum in common, and if the subspectrum
corresponds to a substructure, (i.e., a single unit of connected
carbon atoms), the substructure assigned to the reference
subspectrum is also present in the unknown.
Interpretive library searches are of two types: those limited to

the retrieval of predefined substructures and those able to
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retrieve any substructure contained in the reference compounds
of the library. In practice, both require a large, structurally
diverse, high-quality database of assigned 13C NMR spectra.
The former approach can be illustrated by work of Bremser,27

one of the earliest to explore the merit of the method. A list of
predefined substructures to be predicted is first compiled. A
reference file is then created which correlates each predefined
substructure with its subspectrum. The file includes the
structure of the substructure and the chemical shift and signal
multiplicity of each of its carbon atoms, information derived
from the database. Using the set of signals of the unknown as
input, the reference file is searched for sets of unknown signals
that match (typically within 1−2 ppm) subspectra assigned to
the predefined substructures. The match must meet a set of
conditions to be considered a substructure prediction. A
similarity number is calculated for each substructure to rank-
order the predictions. The method forms the basis of an
automated structure elucidation system, SpecSolv.28 More
recently, an interpretive library search, SISTEMAT, has been
reported which is capable of inferring substructures whose
carbon atoms are assigned 13C NMR chemical shifts29 (see
Current Related Work below).
This paper describes the ongoing development of

INFERCNMR, a 13C NMR interpretive library search program
designed to identify substructures of reference compounds in a
library of assigned spectra that model substructures of a
compound of unknown structure. As demonstrated by the
results reported in this paper, the program can serve as a useful
stand-alone tool for the interpretation of one-dimensional 13C
NMR spectra. However, it can also play a central role in the
enhancement of the performance of SESAMI, an interactive,
comprehensive, computer-based structure elucidation system.30

SESAMI is built on a foundation of two major capabilities:
spectrum interpretation (Program INTERPRET) and structure
generation (Program HOUDINI). Therefore, its effectiveness is
heavily dependent on in-depth spectrum interpretation. The
pool of substructural inferences generated by INTERPRET
from the collective spectral data must be sufficiently rich in
information content to dramatically limit the number of
compatible molecular structures, preferably to one, produced
by HOUDINI. INFERCNMR can enrich that information
pool. Such enrichment is especially important in solving the
structure of unknowns where the ratio of hydrogen atoms to
carbon atoms is low, specifically in compounds with a high
degree of unsaturation such as aromatic compounds. SESAMI
utilizes 2D NMR data in generating substructural inferences,
however, in cases of low hydrogen−carbon ratios, the structural
information derived from 2D NMR experiments can be limited.
Without additional substructural inferences the effectiveness of
SESAMI is reduced leading to an increased number of
candidate structures.
The original version of INFERCNMR24 focused on the

implementation of several features important to an effective
interpretive library search program. The intrinsic insensitivity of
the program to the presence of nonmatching signals, that is,
those signals in the unknown spectrum for which no matches
were found in the reference spectrum, is one of its strongest
assets. A subspectrum match is the only requirement for a
substructure prediction. Predicted substructures need not be
predefined. In fact, there are no restrictions placed on the
nature or size of the predicted substructures. (The user can set
the minimum number of signals to be matched.) A graphical
output, in which the predicted substructures are embedded in

the reference compounds from which they were retrieved,
enhances the value of the information. However, this version of
INFERCNMR failed to rise to the level of performance
currently required in structure elucidation.
First, inferences were not assigned an estimated prediction

accuracy. It is important for the user to have a sense of the
reliability of a substructure prediction since if it is assumed to
be correct, every proposed structure of the unknown will
include the substructure. If in fact the substructure is incorrect (a
false positive), every molecular structure proposed (or produced
by SESAMI) will be incorrect. (Often in the case of a false
positive, the user of SESAMI is alerted to the error because no
molecular structures are produced by the program due to a
contradiction between the incorrect substructure and information
contained in the other inferences produced by INTERPRET.)
Building on earlier work,31,32 a more effective procedure for
estimating prediction accuracy has been developed.
Second, with regard to its application in SESAMI, the

information content of the predicted substructures needs to be
enhanced. Although substructures predicted by the original
version of INFERCNMR are already rich in information
content (they contain at least six carbon atoms and are
explicitly defined: atom type, hydrogen multiplicity, bond type),
they can be further enriched by assigning the appropriate
chemical shifts from the spectrum of the unknown to the
carbon atoms of the predicted substructure. The performance
of the structure generator HOUDINI is significantly improved
by the addition of such information.

■ PROGRAM INPUT AND OUTPUT
INFERCNMR input consists of the signals of the spectrum of
the compound of unknown structurechemical shift and signal
multiplicityand its molecular formula. The output of
INFERCNMR is one or more explicitly defined substructures.
Heteroatoms attached directly to the carbon atoms of a retrieved
substructure are considered to be part of the predicted
substructure. With a large spectral library, the number of predicted
substructures can be large, especially in the case of high molecular
weight molecules. Two management tools are built into the
program to facilitate application of the search results.
First, an estimated prediction accuracy is assigned to each

substructure. In practice, users of the program limit their exam-
ination of the output to substructures with what for them is a
minimum acceptable prediction accuracy, usually 90% or 95%.
Second, if the user so chooses, the selection of informative

substructures to be considered can be further reduced, while
retaining the structural diversity of the original set, based on the
concept of domination.33 The set of predicted substructures with
the minimum acceptable estimated accuracy can be reduced to
a smaller, nondominated set without loss of information based
on two criteria: (1) information content and (2) prediction
accuracy. Substructure A is said to dominate substructure B if A
is better than B in at least one of the criteria and B is not better
than A in either of the criteria. Structure B is not included as a
member of the nondominated set.
In applying the information content criterion to two sub-

structures, the goal is to favor the richer of the two substruc-
tures, while taking care not to eliminate the other if it is potentially
useful. For example, if a substructure, 1, is a superstructure of
substructure 2, it is richer in information content. If substructure 1
also has a higher estimated prediction accuracy than substructure
2, it is better than substructure 2 in at least one of the criteria and
substructure 2 is not better than substructure 1 in either criteria.
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Therefore, substructure 1 dominates substructure 2 and the latter
is dropped from the nondominated set. If, however, the less
information-rich substructure 2 has a higher estimated prediction
accuracy than substructure 1, substructure 2 is better than
substructure 1 in one of the two criteria. Therefore, neither
substructure dominates the other: both 1 and 2 are retained in the
nondominated set. Substructures not related as structure-super-
structure cannot dominate one another.
It is important to note that for application to INFERCNMR,

information content includes not only structure but also
chemical shift assignments to each of the carbon atoms of the
substructure. Thus, two substructures identical in structure,
may differ in information content because of differences in
chemical shift assignments. This concept is illustrated in the
Independent Program Evaluation section.
Consider the substructures from an INFERCNMR search

shown in Figure 1. (Note: The tilde (∼) represents a free
valence site.) The nondominated set consists of the first three
substructures: A, B, and C. Although C is a superstructure of A
and B, A and B are retained in the nondominated set because
they each have a higher predicted accuracy than C. Substructure
D is a substructure of substructure C, but it is assigned a lower
prediction accuracy than substructure C. Substructure D is
inferior with regard to each of the two criteria when compared
to C and is therefore not included in the nondominated set.
INFERCNMR also assigns one or more signals from the

observed spectrum to the carbon atoms of the predicted
substructure. Where there is ambiguity in assignment, a set of
alternative chemical shifts is assigned to a particular carbon
atom of the substructure. In the graphic display of the output,
each predicted substructure is highlighted and embedded in the
reference compound from which it was retrieved.

■ THE SPECTRAL LIBRARY

The quality and diversity of the substructural inferences produced
by INFERCNMR are dependent in part on the quality and
diversity of the reference library of assigned 13C NMR spectra.
The entries in the reference library of 38,225 spectra used in this
study meet three conditions: (1) they contain a minimum of six
different signals in the spectrum; (2) each carbon atom of the
reference compound has been assigned a single chemical shift; and
(3) the chemical shift assigned to each carbon atom of the
reference compound is consistent with the chemical shift range
that has been independently assigned to such a carbon atom with
the same first-layer nearest neighbors as those in the reference
compound. Carbon chemical shifts in the library have been
rounded to the nearest tenth of a part per million.

The structure representation utilized in the library allows for
a very efficient execution of the tasks performed within
INFERCNMR. Topological equivalence classes of the atoms of
the reference compounds and their two-dimensional coor-
dinates are included. Aromaticity and tautomerism play an
important role in substructure matching, which is important in
developing the probability function for estimating the accuracy
of a predicted substructure. If, for example, the library would
encode aromatic systems (e.g., a substituted phenyl group) as
alternating single and double bonds, there exists the possibility
that identical substructures from two different compounds
could be erroneously reported as a mismatch. To address this
problem, the program that created the reference library used in
this study identified aromatic and tautomeric bonds, and
flagged each accordingly. Only tautomers which do not involve
a change in carbon multiplicity (e.g., HOCN↔ OCNH)
are considered since, in contrast to tautomers which do involve
a carbon multiplicity change (e.g., HOCCC ↔ O
CCHC), no simple distinction between the two tautomers
is possible based on 13C NMR. In defining tautomeric bonds in
the library, consider the following generic representation of the
tautomeric unit:

↔ ··· ···

    

  

H X [A A] A X

X A [A A] X H
n

n

A B

A B

where X is a heteroatom such as oxygen or nitrogen and XA and XB
can be the same or different element; A is any atom; and n is 0, 1,
2, ..., n. Although compounds in the reference library containing a
tautomeric unit are encoded structurally in one tautomeric form or
the other, the bonds in these units are flagged as tautomeric bonds.
The molecular formulas of the reference compounds fall

within the range:

− − − − − − − − −C H N O F S Cl Br I6 77 0 148 0 15 0 38 0 15 0 8 0 12 0 8 0 4

The mean molecular formula is

C H N O F S Cl Br I14.37 18.54 0.905 2.598 0.072 0.131 0.213 0.049 0.007

A structure-by-structure match in the library revealed 31 225
different structures. Multiple spectral entries of the same
chemical compound are retained in the library only if they
represent somewhat different chemical shift assignments, which
can occur because of factors such as stereoisomerism, sampling
method (e. g., solvent) and instrumentation.

■ PROGRAM OVERVIEW
INFERCNMR requires a diverse spectral library of assigned
13C NMR spectra and consists of three major program modules

Figure 1. INFERCNMR search output.
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which are seamlessly joined together: substructure prediction,
retrieving substructures from the reference library; estimation
of the prediction accuracy of each predicted substructure; and
chemical shif t assignment.
Substructure Prediction. Subspectrum Matching. Sub-

structure prediction is a two-step process designed to retrieve
substructures of six or more carbon atoms (default value) from
reference compounds in the library. The initial step in pro-
cessing the entered spectral data, chemical shift and signal
multiplicity, is a subspectrum matching procedure whose function
is to search every reference spectrum in the library for a set of six
or more signals that match signals of the spectrum of the
unknown. Each such set is a matching reference subspectrum. An
unknown spectrum signal and a reference spectrum signal match if
their multiplicities are the same and if the chemical shift difference
between them is equal to or less than the designated matching
tolerance in parts per million.
To facilitate the subspectrum search the reference library is

indexed, separately for each signal multiplicity set (singlet,
doublet, triplet, and quartet), according to 13C NMR chemical
shift in increments of 0.1 ppm in the range −80 to 350 ppm.
For each signal in the unknown spectrum, the matching range
to a signal in a reference spectrum is its chemical shift ± the
designated tolerance. Depending on the tolerance, and the
location and proximity of signals in a particular reference library
spectrum, a signal in the unknown spectrum may match no
signal, or one or more signals in the reference spectrum.
A given subspectrum match can therefore be expressed as a

table which lists the chemical shifts of the unknown spectrum
in a column on the left, and, on the right, in each row, one or
more reference spectrum signals which match the correspond-
ing unknown signal within the designated tolerance. Thus, a
particular reference subspectrum, represented by the reference
signals on the right side of the table, can be a “single” reference
subspectrum (i.e., a clean one-to-one match between unknown
spectrum signals and reference spectrum signals) or, in the case
of multiple matches to one or more unknown spectrum signals,
a representation of two or more reference subspectra. For
operational purposes, note that the table described above can
be transposed, that is, a column of the matched reference
signals on the left, and in each row to the right, one or more
unknown signals which match the corresponding reference
signal within the designated tolerance.
Substructure Expression. In the second step, each retrieved

reference subspectrum is expressed as corresponding reference
substructures. (Note that a reference subspectrum of n signals
can give rise to two or more substructures of less than n atoms,
that is, a disjoint substructure.) In addition to the information
in the above-described table, the connection table for the
reference compound from which a substructure is retrieved is
required in this second step. Thus, the specific atoms in the
reference compound to which each signal of the reference
subspectrum corresponds are accessible.
As currently programmed, INFERCNMR, given an entry

spectrum, executes separate searches at tolerances from 0.0 to
2.0 ppm (default value) in increments of 0.1 ppm, for a total of
21 searches. For the purpose of describing the procedure of
substructure expression, consider a subspectrum retrieved from
a reference spectrum match at a single tolerance.
Substructure expression is a breadth-f irst expansion starting at

selected root nodes. A root node initiating breadth-first
expansion is any carbon atom in the corresponding reference
compound whose chemical shift (1) is an entry in the reference

subspectrum, and (2) differs in ppm from the chemical shift of a
matched unknown signal by the exact tolerance being studied.
In the course of the stepwise substructure expansion, an atom
from the reference compound is added to the root node (or
evolving predicted substructure) if three conditions are met: (1)
the chemical shift of the added atom belongs to the reference
subspectrum, (2) the added atom is not topologically equivalent to
an atom in the reference compound already used in the expansion
of the substructure, and (3) there is a one-to-one mapping pos-
sible between reference substructure atoms and unknown
spectrum signals. One-to-one mapping is determined by finding
the maximum matching in the bipartite graph formed by the
signals of the unknown spectrum and the substructure atoms.34 If
an atom fails the third condition but is not part of a generated
substructure from the current subspectrum match, it can be
considered as a root node. However, an atom cannot be used as a
root node more than once. If an atom qualifying as a root node
ends up in a predicted substructure, it can no longer serve as an
initiating root node.
The characteristics of substructure expression are again best

clarified by considering a specific unknown spectrum-reference
spectrum match at a single tolerance. The procedure described,
although not theoretically exhaustive, has in practice, in the limited
number of examples studied in detail, been exhaustive; all possible
dif ferent substructures of six carbon atoms or more have been
generated. However, in the event a valid substructure would fail to
be generated, it would not be a fatal error; only the loss of one
piece of information, generally in a pool of many.
The program produces the largest possible substructures,

that is, none will be a substructure of another substructure
(unless the reference compound contains two or more
nonoverlapping instances of the same substructure). Since an
atom cannot be used as a root node more than once, the
maximum number of substructures that can be produced is
equal to the number of matched signals. However, in practice,
that upper limit was not reached in this study.
Bond types (single, double, triple) by which those atoms of

the retrieved substructure are embedded in the reference
compound (free valence sites) are included in the information
content of the substructure (e.g., CH3CH<, CH3CH).
The information content of a substructure includes heteroatoms

(e.g., oxygen, nitrogen, sulfur) attached directly to a carbon atom.
Additional heteroatoms attached directly to such a heteroatom are
also included in the predicted substructure (e.g., NO2). However,
hydrogen atoms attached to the heteroatom are not included; they
are treated as equivalent to a free valence instead. Thus, substruc-
tures with features as C-NH2 and C−OH are reported as C−N
and C−O, respectively. In these cases, the nature of the bond type
at the free valence site of the heteroatom is not specified.

Prediction Accuracy. Method. In designing a procedure to
estimate the probability that a substructure retrieved by INFERC-
NMR is correct, two approaches were considered. The principles
of statistical analysis, specifically logistic regression analysis
(LoRA), provide a basis for the development of a probability
function.35 Additionally, earlier studies15 using the artificial neural
network (ANN)36 as a pattern recognition tool in spectrum
interpretation suggested its application as a probability function.
These approaches have two requirements in common: a large set
of predicted substructures and a set of independent variables that
characterize predicted substructures.

Substructure Set. The required large set of substructures is
generated using the substructure prediction procedure
described above. Each spectrum in the spectral library in turn
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serves as an inquiry which is searched against every spectrum in
the library including itself. However, for each inquiry, a separate
search is conducted at tolerances incremented by 0.1 ppm
beginning at 0.0 ppm and terminating at 2.0 ppm, for a total of 21
searches. The search is conducted in a manner such that every
substructure in a tolerance-specific set of substructures contains at
least one carbon atom whose chemical shift difference is equal to
the tolerance used, but no carbon atom with a greater chemical
shift difference than that tolerance. Thus, each succeeding
tolerance-specific set of substructures in the search sequence
excludes those substructures generated at lower tolerances. The
result is 21 separate sets of predicted substructures.
Incorrect predictions derived at a tolerance of 0.0 ppm (i.e.,

exact chemical shift matches) provided an opportunity to identify
and delete reference library entries of questionable quality. In each
instance of an incorrect prediction, the reference compound and
its spectrum, and the “unknown” compound and its spectrum
were manually examined. If, based on information in the original
literature (if available) and/or accepted spectroscopic correlations,
the quality of any entry was judged to be suspect, it was deleted
from the library.
During the process of generating the substructure sets, the

validity of each substructure prediction is determined. A sub-
structure retrieved from a reference compound is considered to
be a correct prediction if it meets two conditions. First, the
predicted substructure must be superimposable in every
structural detail on a set of atoms of the “unknown.” This
includes matching of all bonds, including the bond order of
atom sites at which embedding of the substructure in the
“unknown” occurs (free valence sites). Recall that predicted
substructures include heteroatoms attached directly to carbon
atoms. Therefore, in determining validity, a predicted sub-
structure which possesses a free valence at a particular carbon
atom, implying an unidentified carbon atom must be attached
at that site since if there was an attached heteroatom in the
reference compound it would be included in the predicted
substructure, would not match a comparable substructure in the
“unknown” if the corresponding carbon atom had an attached
heteroatom.
The presence of aromatic and tautomeric bonds requires

clarification of bond matching rules.

1. Localized bonds (neither aromatic nor tautomeric) match to
a. Localized bonds which are of the same bond order.
b. Tautomeric bonds (not aromatic bonds) only if

the hybridization of the atoms joined by the bond
matches the hybridization of the atoms of the
delocalized bonds.

2. Aromatic bonds match to aromatic bonds and to bonds
that are both aromatic and tautomeric.

3. Tautomeric bonds match to tautomeric bonds, to bonds
that are both tautomeric and aromatic, and to localized
bonds if condition 1b is met.

The second condition for establishing correctness of a
predicted substructure pertains to chemical shift assignments.
The set of chemical shifts assigned to the carbon atoms of the
predicted substructure by the program (see the Chemical Shift
Assignment section) must contain the actual chemical shifts
assigned in the “unknown.”
Independent Variables. The independent variables (Table 1)

are selected for their perceived relevance to prediction accuracy.
The goal is to develop a function that relates the variables
characterizing a predicted substructure to its estimated prediction

accuracy. A discrete probability function is developed at each of
the 21 tolerances. The basis for this procedure is that some of the
independent variables are tolerance-dependent (see below, e.g.,
sNOSt and NasSt).
The variables are of three types, spectral, structural and

statistical. The first five variables (1−5) describe five character-
istics of the “unknown” compound (u) and its spectrum:
specifically, the number (N) of atoms (A) in the unknown, and
the number (N) of carbon signals of each possible multiplicity:
(S, singlet; D, doublet; T, triplet; Q, quartet). The second five
variables (6−10) describe the same characteristics for the
reference compound (r) from which the substructure was
derived. Similarity between these two sets of variables can
increase the likelihood of a correct prediction. The next five
variables (11−15) describe the same characteristics of the
retrieved substructure (s).
In developing a probability function using a set of

substructures of considerable structural and spectral diversity,
scaling the variables can often enhance discrimination. That this
is indeed the case in this study is suggested by the positive and
statistically significant coefficients observed in logistic regres-
sion calculations upon scaling the variables listed in Table 1.
Scaled variables 1−5 (rRel), Table 2, describe characteristics

of the reference compound/spectrum (variables 6−10, Table 1)
relative to the corresponding characteristics of the “unknown”
compound/spectrum (variables 1−5, Table 1). Scaled variables
6−10 (uRel), Table 2, are the inverse of these relationships, i.e.,
the characteristics of the “unknown” compound/spectrum
(variables 1−5, Table 1) relative to the corresponding charac-
teristics of the reference compound (variables, 6−10, Table 1).
(The addition of “one” to the denominator of scaled variables
2−5 and 7−10 simply avoids division by “zero” in cases where
either the unknown or reference spectrum lacks signals of one
or more multiplicities.) Table 2 also describes the same five char-
acteristics of the substructure relative to the unknown (s/uRel),

Table 1. Description of the 23 Independent Variables

1 uNA: number of atoms in the unknown compound
2 uNS: number of singlets in the unknown compound
3 uND: number of doublets in the unknown compound
4 uNT: number of triplets in the unknown compound
5 uNQ: number of quartets in the unknown compound
6 rNA: number of atoms in the reference compound
7 rNS: number of singlets in the reference compound
8 rND: number of doublets in the reference compound
9 rNT: number of triplets in the reference compound
10 rNQ: number of quartets in the reference compound
11 sNA: number of atoms in the substructure
12 sNS: number of singlets in the substructure
13 sND: number of doublets in the substructure
14 sNT: number of triplets in the substructure
15 sNQ: number of quartets in substructure
16 sNB: number of bonds in the substructure
17 sRMSD: minimum root mean standard deviation
18 sH: histogram signal density variable
19 sIH: inverse histogram signal density variable
20 sFV: number of free valences in the substructure
21 sNOSt: the number of occurrences of a particular substructure

produced in a search at tolerance t
22 sNRC: the number of reference compounds in the library containing

the predicted substructure
23 NasSt: the number of all substructures produced in a search at

tolerance t

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci200619y | J. Chem. Inf. Model. 2012, 52, 1513−15281517



scaled variables 11−15, and relative to the reference compound
(s/rRel), scaled variables 16−20.
Variable 16 (sNB), Table 1, describes the number (N) of

bonds (B), independent of bond multiplicity, connecting atoms
of the substructures. This information combined with that of
variable 11, the number of atoms in the predicted substructure
(sNA), provides information on the number of cycles in the
substructure. In general, greater variations in chemical shift are
expected among open chain fragments than in those with
closed rings. Thus, the greater the ratio sNB/sNA, the more
likely a prediction is to be correct.
For each predicted substructure (six or more carbon atoms),

the minimum root-mean-square deviation (sRMSD) in chemical
shift is determined (variable 17, Table 1). For the purpose of this
calculation, a chemical shift from the “unknown” spectrum is
assigned to each carbon atom of the retrieved substructure such
that the sum of the squares of the chemical shift differences
between the signals of the unknown and the signals assigned to
the carbon atoms of the reference substructure is at a minimum
and a one-to-one mapping of the atoms is achieved.37 Often these
chemical shift “assignments” do not correspond to the actual
values. This variable is a measure of the fit between the unknown
subspectrum and the matched reference subspectrum; the smaller
the value of sRMSD, the better the match, and the more likely the
corresponding predicted substructure is valid.
Signal density in regions of matched signals can be expected

to influence reliability. Regions of high signal density are more
likely to represent a diversity of structural features, leading to
fortuitous signal matches, and therefore, possibly less reliable
predictions. To account for this factor, signal density
histograms, a plot of the number of signals versus chemical
shift in intervals of 0.1 ppm, were prepared using the entire
spectral library, one for signals of each of the four multiplicities.
Two variables, sH and sIH (variables 18 and 19, respectively,
Table 1), are based on this information.

Using chemical shifts “assigned” in the calculation of sRMSD
(variable 17, Table 1), a value, hi, is calculated for each carbon
atom of the predicted substructure, where hi is the number of
signals that appear in the histogram (of the same multiplicity as
the substructure atom) within the range set by the tolerance
used in the search producing the substructure. Σ hi is the sum
of these signal counts for the entire substructure. The
histogram variable for a predicted substructure (sH, variable
18, Table 1) is defined in eq 1

∑= × × +hsH ( )/(2 10 Tol 1)i (1)

The factor (2 × 10 × Tol +1) serves to normalize values of sH for
comparison between the different tolerances without impacting
the evaluation of the data. At the designated tolerance of the
search, the factor is equal to the number of 0.1 ppm intervals in
the histogram whose values must be summed to arrive at the
appropriate value of hi for each carbon atom in the substructure.
The scaled histogram variable sRelH (sH/sNC, variable 21,

Table 2) describes the variable sH relative to the number of
carbons atoms in the substructure (sNC). Signal matches
occurring in regions of the spectrum of low signal density give
rise to lower values of sH and predictions that are more likely
to be valid. In contrast, the more matched signals occur in
regions of high signal density, the greater the danger of an
invalid substructure assignment. However, cases have been
observed in which the majority of the unknown signals give
small values of hi but one or a few give large values. Thus, the
scaled variable can be large even though the majority of
matched signals occur in regions of low histogram signal
density, misleadingly suggesting a less reliable prediction. To
address such spurious values of sH, the sum of the inverse (I) of
the signals counts is used in a complementary variable (sIH,
variable 19, Table 1) as defined in eq 2.

∑= × × +hsIH ( 1/ )/(2 10 Tol 1)i (2)

Here, in contrast to low values of hi, large value of hi will add
little to the sum (Σ1/hi). Thus, the scaled variable sIRelH
(sIH/sNC, variable 22, Table 2) can clarify the value of sRelH.
A high value of sH/sNC arising from a match in which a large
number of signals matches occur in regions of high signal density
will be accompanied by a very low value of sIH/sNC. However, a
high value of sH/sNC arising from a match in which only a small
number of signal matches occur in regions of high signal density
will be accompanied by a “high” value of sIH/sNC.
The information content of a substructure predicted by

INFERCNMR includes the exact nature of the bonding sites
(free valence sites) at which the substructure is embedded in
the reference compound (e.g., CH2 is a substructure of
CH2CH2, but CH2 is not). The number and nature of
such bonding sites can influence the accuracy of a prediction.
This influence is expressed as the variable sFV (variable 20,
Table 1), the sum of all “free valences” in the substructure. For
purposes of this calculation, a single “half-bond” counts as one
free valence, a double “half-bond” as two free valences and any
aromatic “half-bond” as two free valences. In general, as the
value of sFV increases, prediction accuracy decreases. Matches
of carbon atoms where the neighboring structural environment is
well-defined, that is, distant from bonding sites, are expected to be
more reliable. In contrast, carbon atoms at or near a bonding site
have less well-defined immediate structural environments, and
consequently matches of such atoms are less reliable. The situation
is related to an observed characteristic of the interpretive library

Table 2. Scaled Independent Variables

1 rRelAtoms = rNA/uNA
2 rRelSing = rNS/(uNS + 1)
3 rRelDoub = rND/(uND + 1)
4 rRelTrip = rNT/(uNT + 1)
5 rRelQuart = rNQ/(uNQ + 1)
6 uRelAtoms = uNA/rNA
7 uRelSing = uNS/(rNS + 1)
8 uRelDoub = uND/(rND + 1)
9 uRelTrip = uNT/(rNT + 1)
10 uRelQuart = uNQ/(rNQ + 1)
11 s/uRelSize = sNA/uNA
12 s/uRelSing = sNS/(uNS + 1)
13 s/uRelDoub = sND/(uND + 1)
14 s/uRelTrip = sNT/(uNT + 1)
15 s/uRelQuart = sNQ/(uNQ + 1)
16 s/rRelSize = sNA/rNA
17 s/rRelSing = sNS/(rNS + 1)
18 s/rRelDoub = sND/(rND + 1)
19 s/rRelTrip = sNT/(rNT + 1)
20 s/rRelQuart = sNQ/(uNQ + 1)
21 sRelH = sH/sNC
22 sIRelH = sIH/sNC
23 sRelFV = sFV/sNB
24 sFracRetr = sNOSt/sNRC
25 sSearchSel= sNOSt/NasSt
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search: the predicted substructure is often a subset of the
substructure that is actually common to unknown and reference
because the outermost carbon atoms of the actual common
substructure are in different chemical environments in the two
compounds.24 To normalize with regard to the size of predicted
substructures, the sFV variable is scaled by dividing by the total of
number of bonds in the substructure (sNB), that is, sRelFV =
sFV/sNB (variable 23, Table 2). A low value of sRelFV favors
increased prediction accuracy.
Three variables relate to “number of occurrences”.

1. sNOSt (variable 21, Table 1): the number (N) of occur-
rences (O) of a predicted substructure (s) produced in a
search (S) at tolerance t (the count includes occurrences of
larger substructures that contain the predicted substructure).

2. sNRC (variable 22, Table 1): the number (N) of
reference compounds in the library (RC) containing the
predicted substructures.

3. NasSt (variable 23): the number (N) of all substructures
(as) produced in a search (S) at tolerance t.

For a search at a particular tolerance t, the greater the fraction
of reference library occurrences of a particular substructure
retrieved, the stronger the case for a valid substructure pre-
diction. Retrieval of only a few of the reference library occur-
rences of a particular substructure could suggest an “accidental”
substructure match, i.e., a suspect substructure assignment. This
property can be expressed by the variable sFracRetr (no. 24,
Table 2) which is the ratio sNOSt/sNRC, a larger value of
which should contribute to enhanced prediction accuracy.
A related rationale suggests that a larger value for variable

sSearchSel (no. 25, Table 2), the ratio of the number of
occurrences of a particular substructure retrieved at tolerance t
(sNOSt) to the number of all substructures produced at
tolerance t (NasSt), indicates a more selective search outcome
favoring a greater prediction accuracy. Conversely, a low value
of sSearchSel indicates that the predicted substructure is in the
minority among all predicted substructures, detracting from its
reliability unless complemented by a high value for sFracRetr.
Higher values of both of these variables reinforce the reliability
of the predicted substructure.
Probability Function. The large set of predicted sub-

structures required for development of the probability function
consists of 21 separate sets of substructures each of which was
collected at a specific tolerance (0.0, 0.1, 0.2, ..., 2.0 ppm). During
the process of generating this set, the validity of each substructure
prediction is determined and all 48 variables (Tables 1 and 2) are
calculated for each substructure. Each of the 21 tolerance-specific
sets of substructures is randomly divided into three approximately
equally sized subsets. One of the three tolerance-specific subsets
serves as the learning set for probability function training, the
second serves as the test set for the purpose of estimating
prediction accuracy, and the third serves as the validation set for
evaluating the performance of the probability function.
The same learning set is used to calculate the corresponding

logistic regression and to train the corresponding ANN. Cal-
culated values for the independent variables selected (not all
variables are used in each case, see Optimizing the ANN) are
used as “input.” The dependent variable y in this case is binary
in nature; a prediction is either valid or invalid, and y is
therefore assigned a value of one or zero, respectively.
Probability functions whose dependent variable has one of two

values are usually curvilinear, a tilted S shape with asymptotes at 0
and 1 in the ideal case, thereby precluding solutions less than 0

and greater than one, and are referred to as logistic functions. The
method used for finding such a function is called logistic regression
analysis (LoRA).35 The probability p of a prediction being valid is
expressed by eq. 3, where 0 ≤ p ≤ 1. Solving for p requires a
corresponding value of p′ which can be determined from the
independent variables x calculated for each predicted substructure.
First-order and second-order functions have been studied. The
latter is expressed by eq. 4 with cross terms, where k, l, m = 1,
2, ..., N (the number of independent variables), and l < m.

= + ′p 1/(1 e )p
(eq. 3)

∑ ∑ ∑β β β′ = + +p x x xk k l m l m0 , (eq. 4)

Alternatively, an artificial neural network (ANN) can be used in
place of the LoRA in estimating prediction accuracy. For this
application, a feed-forward ANN with one hidden layer was
studied. The independent variables served as input neurons. The
output is a single neuron, the probability p that a substructure
prediction is valid. A back-propagation-of-error algorithm36 was
employed in training the network. A sigmoidal squashing function
is used as the transfer function, where Netj is the net input of the
jth neuron (eq. 5). The parameter αj was set to unity without loss
of generality,36 and the threshold parameter θj and the

α θ= + − +f (Net ) 1/(1 exp[ (Net )])j j j j (eq. 5)

weights between neurons were optimized during the learning
process. The ANN weights and offsets were initialized with
pseudorandom values between −1 and +1.

Estimating Prediction Accuracy. In applying either LoRA or
ANN, the calculated output p is neither 0 nor 1, but some value
between the two. For real-world application, that probability p
must be converted to estimated prediction accuracy. That requires
relating p to an observed prediction accuracy in a model of the
system to be studied.38 The model in this case is based on the test
set (the second of three subsets of predicted substructures
retrieved at each tolerance). Each predicted substructure in the test
set is treated as an object to be processed by either the logistic
regression or the ANN developed with the training set. A
probability value p is calculated for each predicted substructure,
each of which is known to be correct or incorrect.
To relate p to estimated prediction accuracy, the interval

between 0 and 1 is divided into 1001 equidistant units i (i =
0.000, 0.001, ..., 1.000). Each of the predicted substructures is
assigned to the unit corresponding to its calculated probability
p. For each of the units i to which substructures have been
assigned, the observed accuracy A, expressed as a percentage, at
threshold i is calculated using eq 6, where Ni1 is the number of
all valid predictions (hence the subscript 1) with probability
values equal to and greater than i and Ni0 is the number of all
invalid predictions (denoted by the subscript 0) with
probability values equal to and greater than i. The table of p
versus A values derived from the test set serves as the

= +A N N N100 /( )i i i i1 1 0 (6)

source of estimated prediction accuracies in the application of
INFERCNMR to real world unknowns. The observed accuracy A
that corresponds to the derived p value for a particular predicted
substructure, using either of the two procedures described, is
assigned as the estimated prediction accuracy for that substructure.

Chemical Shift Assignment. In an initial trial, each carbon
atom of the predicted substructure was assigned one or more
signals of the unknown of the appropriate multiplicity that

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci200619y | J. Chem. Inf. Model. 2012, 52, 1513−15281519



matched the chemical shift of the corresponding atom of the
reference substructure within the particular tolerance (between
0.0 and 2.0 ppm) used in retrieving the substructure. Since the
tolerance ranges used are in fact less than the observed differences
in chemical shift due to solvent variations, in practice the error rate
due to chemical shift mismatches was found to be unacceptably
high. Larger, but informed ranges were required.
Consider the predicted substructure shown in Figure 2.

(Again, note that the sites designated with the tilde (∼) represent
sites of free valence, that is, atoms (and their bonds) at which
embedding in the reference compounds occurs.) In an attempt to
predict plausible chemical shift ranges for each carbon atom of the
substructure, large ranges would be expected for carbon atoms
with the free valence sites because of the uncertainty of the
attached atom(s). It follows that, in general, the further removed a
carbon atom is from a free valence site, the narrower the expected
chemical shift range since the surrounding chemical environment
is well-defined. This concept forms the basis of the method of
chemical shift assignment in INFERCNMR.
The starting point is the entire set of predicted substructures

(from all 21 tolerance-specific sets) which are correct with regard
to structure. Recall that each member of the reference library
serves as an “unknown” in generating the set of predicted
substructures. Since the “unknowns” are in fact known in this
study, the chemical shifts assigned to the carbon atoms of the
predicted substructures are known. Thus, chemical shift
differences between the actual chemical shifts assigned to the
carbon atoms of the predicted substructure and those assigned
to the corresponding reference substructure can be determined.
Using all carbon atoms of all of the predicted substructures,

separate histograms were prepared of the chemical shift
difference (in units of 0.1 ppm) between corresponding carbon
atoms and the distance of that carbon atom from the nearest
free valence site. i.e., a separate histogram was created for
distance 0 (a free valence site), 1, 2, 3, ..., and 8.
For the substructure pictured in Figure 2, carbons atoms a

and h are assigned to the histogram representing distance 0 and

atoms b, e, and g, to the histogram representing distance 1.
Atom c is assigned to distance 2 (two bonds removed from the
closest free valence site, atom a); atom d is assigned to
histogram distance 3 (it is three bonds removed from two free
valence sites, atoms a and f). Note that a heteroatom (oxygen)
with a free valence is used in measuring distance. In establishing
the applicable chemical shift ranges per distance, one percent of
the entries at either end of each histogram were considered
outliers and deleted. The ± ppm ranges shown in Table 3 are
derived from the larger of the two values at the ends of the
histogram. However, a small increment was added to further
broaden the applicable shift range since it is better to include an
incorrect chemical shift assignment than to exclude the correct
assignment. In the case of distance 7, an examination of the
histogram indicated a larger complement of outliers at the high
end; consequently, the value was reduced accordingly.
Histograms for distances greater than 8 were determined, but

the number of entries was low and the obtained ranges were
less than differences expected because of solvent variation.
The assignment of chemical shift to the carbon atoms of a

predicted substructure derived from a compound of unknown
structure begins with the known chemical shifts assigned the
corresponding atoms of the reference substructure and the
distance of each carbon atom of the reference substructure to
the nearest free valence site. Then using the appropriate
chemical shift range (Table 3) for each carbon atom, all signals
of the spectrum of the unknown that match the reference
spectrum signal within the range specified are assigned to the
corresponding carbon atom of the predicted substructure.
Given the breadth of the ranges shown in Table 3, multiple
chemical shift assignments to carbons atoms do occur.

■ RESULTS AND DISCUSSION
Criteria for Performance Evaluation. The performance

of the probability functions for estimating prediction accuracy
can be evaluated in terms of two characteristics: (1)
discrimination, the ability to distinguish between valid and
invalid predicted substructures, and (2) recall, at a given
required level of accuracy, the fraction of valid substructures
which are predicted to be correct, for example, recall at 95%
accuracy. In most applications of INFERCNMR, retrieval of
substructures with high estimated predicted accuracies will be of
major interest. Therefore, in this study, performance is evaluated
at estimated prediction accuracies of 90%, 95%, and 99%.
As indicated earlier, INFERCNMR executes an interpretive

library search by collecting retrieved substructures separately at
21 tolerances ranging from 0.0 to 2.0 ppm. In addition to the
tolerance-specific nature of some of the independent variables,
this approach also serves to enhance discrimination since in
estimating the accuracy of a predicted substructure, that
probability function is used which was trained at the same
tolerance as that at which the predicted substructure was
produced. Data manageability is also improved since operating
at multiple tolerances reduces the size of substructure sets to be
processed and therefore the computation times.
As applied to INFERCNMR, the LoRA model demonstrated

inferior performance to the ANN model. A linear LoRA model
without cross terms resulted in poor discrimination and low
recall. The addition of cross terms at low tolerances improved
performance, but to a level significantly less than that of the
ANN model. The addition of cross terms at higher tolerances
proved to be impractical due to prohibitive computational
times. Consequently, the ANN model was chosen for further
development.

Figure 2. Chemical shift assignment.

Table 3. Chemical Shift Assignment Windows

distance to
free valence

1st
percentile
(ppm)

99th
percentile
(ppm)

number of
data points

shift
window
(ppm)

0 −15.4 15.3 1 693 893 ±15.5
1 −11.6 11.8 1 435 763 ±12.0
2 −7.9 9.5 493 126 ±9.7
3 −5.3 4.8 194 370 ±5.5
4 −3.3 3.7 102 410 ±4.0
5 −2.0 2.6 75 790 ±3.0
6 −1.4 2.0 31 088 ±2.2
7 −1.3 4.2 9 285 ±2.2
8 −1.2 2.2 3 057 ±2.2
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Optimizing the ANN Model. Back propagation neural
networks have been shown to be capable of treating complex
relationships,36 however, optimal values of network parameters
are required for optimal performance. Optimal values of three
of these network parameters in particular proved to be
dependent on a number of factors: (1) the tolerance, (2) the
type of input neurons (i.e., the specific independent variables
selected from Tables 1 and 2), (3) the number of input
neurons, and (4) the number of hidden neurons.
The performance of back-propagation neural networks has

been shown to be sensitive to the relationship between the
number of “objects” (predicted substructures) in the learning
set and the number of network weights (connections). Given
the chemist’s need for a model of high predictive reliability and
the large number of substructures generated at each tolerance,
the neural networks were constituted such that the square of the
number of network weights was equal to or less than the
number of substructures in the learning set. Since the network
has a single output neuron, in practice, the number of network
weights is dependent only on the number of input and hidden
neurons. The number of hidden neurons considered in this
study varied from 3 to 20.
Table 4 summarizes the number of new substructures

retrieved at each of the 21 tolerances studied. As expected,
the number of substructures predicted increases with increasing
tolerance. Each of the three subsets of each tolerance-specific set
of substructures, the learning set, the test set, and the validation
set, consists of approximately one-third of the set of
substructures, for example, approximately 24 700 substructures
at 0.0 ppm and 681 500 substructures at 2.0 ppm.
For the purpose of optimizing the ANNs, the tolerance range

(0.0−2.0 ppm) was divided into 5 segments (Table 5). For
each segment, the average of the number of substructures was
calculated. Next, for each of the five segments, a number of
input neurons was selected such that the square the number of
weights in a network of 20 hidden neurons was equal to or less
than the average number of substructures. The results are
summarized in Table 5. In the two smallest tolerance segments,
0.0 ppm and 0.1−0.2 ppm, the base set of 23 variables (with the
exception of sRMSD in the 0.0 ppm segment since it has a
value of zero for all substructures), which contains all of the
basic information, and the two histogram variables (variables 21
and 22, Table 2, the most important of the scaled variables) are
used. (Using all 48 variables and 3 hidden neurons with the
substructures produces at 0.0 ppm (24,700) led to overtraining
of the network after only one epoch.) The scaled variables 23,
24, and 25 (Table 2), variables derived from the base set and
judged to be next in importance, are added in the 0.3−0.4 ppm

tolerance segment. All variables of Table 2 with the exception
of variables 6−10 and 16−20 (which provide parallel
information to variables 1−5 and 11−15, respectively) are
added to the 0.5−1.5 ppm tolerance segment for a total of 38
variables. All 48 variables are used in the 1.6−2.0 ppm tolerance
segment.
ANN network parameters were optimized during training,

except for the learning rate η and the momentum factor μ. The
latter two parameters were determined independently (0.7 and
0.3, respectively) by training with significantly smaller learning
subsets. To determine the optimal number of hidden neurons
for each network at each tolerance, each of the 21 tolerance-
specific learning sets were trained through 30 epochs, first with 3
hidden neurons, and in sequence, up to 20 hidden neurons (for
a total of 18 networks at each of the 21 tolerances). After each
of the 30 epoch sessions and before the next session, the test set
(at the same tolerance) was run in predictive mode using the
ANN of that session. Two types of data were collected at each
tolerance for each of the 18 networks trained with different
numbers of hidden neurons: (1) root-mean-square error (a
measure of the difference between calculated output value and
target value) for both learning set and test set plotted as a
function of epoch number; (2) recall at 99% accuracy for both
sets as a function of epoch.
As expected, root-mean-square error decreases with increas-

ing epochs until a plateau is reached. For each of the 21
tolerances studied, the 18 root-mean-square error plots for both
learning set and test set were examined. Three of the best
hidden neuron plots were selected as follows. For each of the
18 learning set and test set plots of root-mean-square error

Table 4. Number of Substructures Generated As a Function of Tolerance (ppm)

Tol. (ppm) no. of substrates no. correct percent correct Tol. (ppm) no. of substrate no. correct percent correct

0.0 74 199 74 055 99.8 1.1 704 196 349 045 49.6
0.1 78 930 77 896 98.7 1.2 820 156 368 910 45.0
0.2 160 802 156 008 97.0 1.3 941 369 386 046 41.0
0.3 219 580 206 963 94.3 1.4 1 071 969 402 392 37.5
0.4 264 050 239 861 90.8 1.5 1 212 608 422 370 34.8
0.5 309 536 265 738 85.9 1.6 1 366 983 441 641 32.3
0.6 349 269 280 182 80.2 1.7 1 532 637 464 198 30.3
0.7 392 613 290 308 73.9 1.8 1 695 074 483 547 28.5
0.8 455 005 306 455 67.4 1.9 1 868 455 500 226 26.8
0.9 523 833 318 392 60.8 2.0 2 044 446 524 550 25.7
1.0 605 186 332 017 54.9

Table 5. Selection of Variables as Input Neurons for ANN
Training

group
no.

tolerance
range

included
(ppm)

number
of input
neurons variables selected as input neurons

1 0.0 24 All variables from Table 1 except sRMSD
and the two histogram variables (no. 21
and 22, Table 2).

2 0.1−0.2 25 All 23 variables from Table 1 and the two
histogram variables (no. 21 and 22,
Table 2).

3 0.3−0.4 28 All 23 variables from Table 1; the two
histogram variables (no. 21 and 22,
Table2); and variables 23, 24, and 25
(Table 2)

4 0.5−1.5 38 All 23 variables from Table and variables
1−5; 11−15 and 21−25 (Table 2).

5 1.6−2.0 48 All 48 variables from Table 1 and Table 2.
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versus epoch, the range of small difference between root-mean-
square errors is identified, since larger differences indicate
nongeneralizing networks. Within those eighteen ranges, the
three plots which displayed the smallest root-mean-square error
of the learning set were selected.
The choice among the three surviving hidden neuron plots at

each of the 21 tolerances was selected as follows. Each of the
three plots of recall at 99% accuracy versus epoch for both
learning set and test set were examined to identify the range of
small difference in recall between the two. That hidden neuron
plot was selected which displayed the maximum recall at 99%
accuracy within the identified range. The optimal number of
hidden neurons at each tolerance is summarized in Table 6.
This study also suggested the optimal number of epochs in
training each network.

In applying INFERCNMR in structure elucidation, a user
could expect a substructure predicted with high estimated
prediction accuracy to be present in the compound of unknown
structure. If that substructure prediction is in fact invalid (a false
positive), the molecular structure proposed for the unknown
will be incorrect, a fatal error. In contrast, a valid substructure
predicted with a low estimated prediction accuracy (a false
negative) would not be expected to be present in the unknown
by the user; a loss of valuable information, but not a fatal error.
To increase recall in using the ANN model, the standard

back-propagation-of-error algorithm used in training the ANN
was transformed into a target-weighted one. This required two
minor changes. First, the equation for the correction, δ, of the
output neuron during training is modified by multiplication
with the user-defined weighting function,W(T), which depends
solely on the target value T, where T is either 0 or 1 (eq 7).
Second, the calculated mean error, Sα, between T and Y for data
set α (e.g., the learning set) must reflect the resulting target
weights as in eq. 8 (where Nα is the number of objects in the
data set and k designates a specific object).

δ = − − > ∀T Y Y Y W T W T T( ) (1 ) ( ) where ( ) 0 (7)

∑= − =α α α α α αS T W T N k N( Y ) ( )/ ( 1, 2, ..., )k k k
2

, ,
2

,

(8)

The function W(T) serves to bias the error: W(0) > W(1)
favors false negatives and W(0) < W(1) favors false positives.
The net effect of favoring false negatives is to decrease the
probability of false positives and thereby increase recall. The
value of W(T) that maximizes recall was independently
determined prior to full optimization of the ANNs. For this
purpose, the value of W(0) was set to 1.0 (it is the ratio of W(0)
toW(1) that is important) and the value ofW(1) was varied from
0.05 to 1.20. (When W(1) = 1, no bias is introduced.) Studies
were carried out at 90%, 95%, and 99% accuracy. Observed
differences in recall with changes in the value of W(1) were
greatest at 99% with maximum recall at W(1) = 0.1. Since
substantially smaller differences in recall were observed at 90% and
95%,W(1) was set to that value thereby achieving close to optimal
performance at all three levels of accuracy.

Neural Network Performance. Substructures of the
validation subsets serve as the basis for evaluating the
performance of the 21 optimized, tolerance-specific neural
networks. The information required for the evaluation includes:
(1) the validity and estimated prediction accuracy of each
validation substructure; and (2) recall at 90%, 95%, and 99%
accuracy for each validation set. The results at five selected
tolerances in the range from ±0.3 ppm to ±2.0 ppm are
summarized in Table 7. Data for the validation sets (VS) are
presented along with the comparable data obtained for the
corresponding learning sets (LS) and test sets (TS).
The third set of columns (predictions) records the number

of retrieved substructures in each of the three sets at each of the
five tolerances and the percentage of correct substructures.
Again, the numbers represent new substructures not previously
retrieved at lower tolerance. As expected, as the width of the
tolerance increases, the number of substructures retrieved
increases, but the percentage of correct substructures decreases.
For example, in the validation sets, the number of substructures
retrieved increases from 72 798 at ±0.3 ppm to 690 229 at ±2.0
ppm, while the percentage of correct substructures decreases
from 93.3% to 25.3%. Each succeeding set of three columns
(90% accuracy; 95% accuracy; and 99% Accuracy) records the
number of substructures predicted at estimated accuracies of
90%, 95%, and 99%; the actual prediction accuracy for each set;
and the percentage of valid substructures captured (recall).
Note that in the case of the test sets (TS), estimated prediction
accuracy equals actual prediction accuracy (see Estimating
Prediction Accuracy) except at ±0.3 ppm where the procedure
gives an accuracy of 98.9% instead of 99%.
The data reveal some noteworthy trends regarding recall. At

any tolerance, recall decreases with an increasing requirement
for accuracy. For example, at a tolerance of ±0.5 ppm, recall for
the validation set decreases from 98.2% at 90% accuracy to
64.2% at 99% accuracy. Thus, the price for demanding higher
accuracy at any given tolerance is a loss of information, i.e.,
fewer predicted substructures for a given unknown compound.
At all three prediction accuracies, recall also decreases with an
increase in tolerance from 0.3 ppm to 1.5 ppm. At 90%
accuracy, a further increase in tolerance to ±2.0 ppm results in
no further decrease in recall, while at accuracies of 95% and
99%, recall actually improves with the increase to ±2.0 ppm.
The apparent anomaly is explicable in terms of the relative
influence of the variables used in training the ANNs. With the
large number of substructures retrieved at the high tolerances,

Table 6. Optimum Number of Hidden Neurons at Each
Tolerance

tolerance no. of hidden neurons

0.0 3
0.1 3
0.2 4
0.3 4
0.4 4
0.5 5
0.6 6
0.7 6
0.8 6
0.9 7
1.0 9
1.1 10
1.2 9
1.3 10
1.4 10
1.5 12
1.6 10
1.7 14
1.8 15
1.9 16
2.0 17
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those variables which are statistical in nature (e.g., sNOSt/
sNRC) play a more influential role in training networks at
higher tolerances, leading to enhanced discrimination between
valid and invalid substructures.
Network performance is evaluated in terms of two measures:

(1) how closely the estimated prediction accuracies of 90%,
95%, and 99% match actual accuracy for each validation set;
and (2) how closely recall at 90%, 95%, and 99% accuracy for
each validation set matches recall values for the corresponding
test sets. At an estimated prediction accuracy of 90%, the
observed difference in accuracy between validation and test sets
is small; a maximum of 1.6 percentage points at 0.5 ppm. At 90%
accuracy, the observed deviations at tolerances 1.0 ppm, 1.5 ppm,
and 2.0 ppm are less, and range from 0.1% to 0.9%. (At a tolerance
of 0.3 ppm, all substructures retrieved have prediction accuracies
above 90%.) At estimated prediction accuracies of 95% and 99%,
deviations from test set accuracies are equally small, varying from a
low of 0.1 percentage points to a high of 1.6 percentage points. A
comparison of test sets with the learning sets reveals comparably
small differences ranging from 0.3% to 3.5%.
A comparison of the recall values of validation sets and test

sets at each of the three estimated prediction accuracies and five
tolerances (Table 7) leads to a similar result, small differences.

The difference varies from 0.0 to 0.8 percentage points, except at
an estimated accuracy of 99% where somewhat larger differences
are observed, 4.0%, 1.8%, 1.4%, and 1.3%, at tolerances of 0.3, 0.5,
1.0, and 2.0 ppm, respectively. Comparable differences, varying
from 0.0% to 3.0%, are observed between the learning sets and the
test sets.

■ INDEPENDENT PROGRAM EVALUATION

To further evaluate performance, the program was tested using
a structurally diverse set of 12 complex natural products39−50 as
“unknowns”, none of which are included in the reference library
used in this study (Figure 3). Specifically, the substructures
derived from these compounds were not used in training the
ANN for estimating prediction accuracy. The results are
described in Table 8.
The first three columns (substructure output) report

information about the substructures retrieved by INFERCNMR
with an estimated accuracy equal to or greater than 90%. In
examples 9, 10 and 12, the actual accuracy is less than 90%.
Note that Table 8 reports results for the substructures retrieved
from each individual compound collected over 21 different
tolerances. Table 7, in contrast, reports average results for all

Table 7. Neural Network Performance at Estimated Accuracy of 90%, 95%, and 99%

predictions 90% accuracyb 95% accuracy 99% accuracy

Tol.
(ppm) set

no. of
substructures

percent
correct

no.
predicted

accuracy
(%)

recall
(%)

no.
predicted

accur acy
(%)

recall
(%)

no.
predicted

accuracy
(%)

recall
(%)

±0.3 LSa 78 176 95.0 77 581 95.5 99.8 56 070 99.4 75.1
TSa 68 606 94.4 68 044 95.0 99.8 47 986 98.9 73.2
VSa 72 798 93.3 72 202 93.9 99.8 52 976 99.0 77.2

±0.5 LS 107 206 85.5 101 744 88.5 98.3 89 537 94.7 92.5 60 948 99.5 66.2
TS 99 521 86.8 94 183 90.0 98.1 83 515 95.0 91.9 57 615 99.0 66.0
VS 102 809 85.3 97 485 88.4 98.2 86 021 93.4 91.6 57 030 98.7 64.2

±1.0 LS 206 457 55.3 93 451 90.7 74.3 71 397 96.5 60.4 29 855 99.5 26.0
TS 198 158 54.8 88 052 90.0 73.0 66 204 95.0 57.9 26 219 99.0 23.9
VS 200 571 54.5 88 071 89.9 72.5 66 513 94.9 57.8 27 977 98.9 25.3

±1.5 LS 407 991 35.2 69 336 92.6 44.7 36 609 97.7 24.9 12 541 99.7 8.7
TS 399 873 34.7 65 796 90.0 42.7 34 844 95.0 23.9 11 930 99.0 8.5
VS 404 744 34.6 66 611 90.9 43.2 35 346 96.4 24.3 11 513 99.4 8.2

±2.0 LS 684 443 26.1 81 928 93.5 42.8 60 276 97.5 32.9 31 651 99.6 17.6
TS 669 774 25.6 76 093 90.0 40.0 53 956 95.0 29.9 25 752 99.0 14.9
VS 690 229 25.3 79 030 89.4 40.5 56 991 94.0 30.7 28 713 98.2 16.2

aLS = learning set; TS = test set; VS = validation set. bAt a tolerance of ±0.3 ppm all predictions receive an estimated accuracy greater than 90%.

Table 8. Results of Independent Evaluation

substructure output

no. substructures ≥90% ≥90% nondominated

compound total no. substructures % correct no. substructures % correct tau tau max

1 299 47 100 6 100
2 1366 40 93 13 77 0.47 0.64
3 47 5 100 1 100
4 1522 20 95 9 89 0.3 0.48
5 267 168 98 5 60 −0.77 0.77
6 666 58 95 6 50 0 0.8
7 715 435 97 15 60 0.4 0.72
8 37 21 100 5 100
9 8092 3609 88 324 52 0.38 0.71
10 716 7 57 6 67 0.73 0.73
11 349 39 95 11 91 0.43 0.43
12 154 20 0 8 0
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substructures produced from the entire validation set at a
specific tolerance.
The data in Table 8 further attests to the quality of the

measure of estimated prediction accuracy. However, the
particular estimated prediction accuracy procedure described
herein will have limitations given the limited reference library
used in developing the neural network. Neural networks are
effective in interpolating, but not as effective in extrapolating.
Thus, a network trained with a set of substructures derived
from a set of compounds of limited size and diversity will in
general be most effective in estimating substructure prediction
accuracy for unknowns within the range of substructure
diversity in the training set.
Next, turn to the data for the nondominated set, the

remaining four columns in Table 8. Consider the second entry
(compound 2). Of the total of 1366 substructures retrieved, 40
are reported with an estimated accuracy equal to or greater than
90%. Of the 40, 37 (93%) are correct predictions. The
nondominated set of predictions with an estimated accuracy
equal to or greater than 90% includes 13 substructures of which 10
(77%) are correct predictions. These results elicit two questions.
First, note that the percentage of correct substructures is less

in the nondominated set (77%) than in the original set from
which it was derived (93%). (This same observation obtains in
the case of all but one compound, compound 10, in Table 8.)
The “concentration” of incorrect substructures in the non-
dominated set is to be expected since a correct substructure can
never dominate (eliminate) an incorrect substructure. Only an
incorrect substructure can dominate an incorrect substructure
and since there are few incorrect substructures relative to correct
substructures, the elimination of an incorrect substructure,
although possible (and occurs in the case of compound 10), is
usually unlikely. Thus, while the number of correct substructures is
reduced in arriving at the nondominated set, there is little or no
change in the number of incorrect substructures.
Second, the percentage of correct substructures in the

nondominated set by itself is not sufficiently informative. A
better sense of the discriminating power of the method is
required. In the output, substructures of the nondominated list
are arranged in decreasing order of estimated accuracy. The
ideal arrangement would have all correct predictions at the top
of the list, and the incorrect predictions at the bottom. If, in
practice, this is not obtained, what is a measure of the
“goodness” of the mix? (The worst case is where all incorrect
substructures have a higher estimated accuracy than the cor-
rect substructures.) One applicable measure is Kendall’s tau
value (τ).51 Tau is a measure of the degree of concordance between
two rankings; in this case between the rankings of estimated
accuracy and correctness of the predicted substructures. In this
method, all possible combinations of two predicted sub-
structures in the set of nondominated substructures which
differ both in predicted accuracy and correctness are examined.
Each pair is counted either as concordant if the substructure
with the higher reliability is correct or as discordant if it is not.
The difference in the numbers of concordant and discordant
pairs is then normalized by the geometric mean of the number
of pairs that differ in predicted accuracy (Nx) and the number
of pairs that differ in correctness (Ny) (eq 9). Kendall’s τ lies

τ = − −N N(concordant discordant)( )x y
0.5

(9)

in the range from −1 to 1. A value of +1 indicates perfect order,
that is, all correct substructures appear before the incorrect

ones, while the value −1 characterizes the worst case. Due to
“ties” (i.e., where the two substructures of a pair have the same
correctness or reliability), a perfect order will normally result in
a value of less than one in cases of more than two substructures.
(A pair of substructures in which both correctness and reliability
are the same is not considered in the determination of τ.) To
facilitate interpretation in such cases, the maximum value that τ
can assume, given the number of correct and incorrect
substructures and conserving the ties in predicted accuracy, is
also computed. Thus in the case of compound 2, the order of
correctness within the nondominated set is reasonable, but not
perfect. It is perfect in compounds 10 and 11. In compound 5, all
incorrect substructures lie above correct substructures. In
compounds 1, 3 and 8, all members of the nondominated set
are correct and therefore ranking does not play a role. The same is
true for compound 12 where all substructures are incorrect.
A closer look at the results of compound 11, Velloquercetin,

serves to amplify the nature of the information in the
INFERCNMR output and illustrate the application of that
information. The role of INFERCNMR is to enhance the
elucidation of complex structures, either in a standalone mode
or as an addition to a comprehensive, computer-based struc-
ture elucidation system such as SESAMI,30 by increasing the
information pool. INFERCNMR is at its most powerful when
the information is used in SESAMI.
The structure of Velloquercetin was elucidated in 199849

using a traditional approach based heavily on NMR spectral
properties: 1D 13C NMR, 1D 1H NMR, HMQC (one-bond
carbon−hydrogen correlations), and HMBC (long-range
carbon−hydrogen correlations). No COSY data were provided.
Using just these published NMR data (Table 9) as input to
SESAMI resulted in a session that was aborted after 30 min and
5000 generated structures (Table 10, row 1). Clearly, the
information content of the collective NMR data was insufficient
to narrow the plausible structures to a very small number, that
is, to a solution useful to the chemist. Can INFERCNMR
provide additional substructural information content, which
does not duplicate that produced by the spectrum interpreta-
tion program (INTERPRET) of SESAMI, to produce a
solution that is useful to the chemist?
Using the published 1D 13C NMR data for Velloquercetin,49

INFERCNMR generates 31 substructures with estimated
prediction accuracies greater than or equal to 90%. Of the 31
substructures, 11 substructures 1, 2, 3, 7, 12, 16, 20, 24, 28, 30
and 31, in order of decreasing estimated prediction accuracy,
are nondominated (Figures 4 and 5). Of the 11 nondominated
substructures, only structure 31, the structure with the lowest
estimated prediction accuracy of the group, is a false positive.
Thus, in this case, INFERCNMR performance is excellent; in the
list of substructures, all correct ones lie above the incorrect one
(the Kendall’s τ value is at a maximum in this case, Table 8).
With the exception of substructures 16 and 30, the

substructures are related as superstructure-substructure. These
latter relationships are illustrated in Figure 4 by means of a HASSE
diagram.52 For example, substructures 24 and 28 (identical) are
richest in structural content. They are the root node of the HASSE
tree. Viewing the leftmost branch of the tree, substructures 24 and
28 are superstructures of substructure 2.
Recall, correct chemical structure and correct chemical shift

assignments are required to designate a substructure prediction
as valid. Substructure 1 is structurally identical to substructure
31, yet substructure 31 is incorrect. Thus, the difference must
lie in chemical shift assignments. An examination of chemical
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shift assignments of substructure 31 reveals one carbon atom
lacks a correct chemical shift assignment. A given carbon atom
of a substructure may have multiple assignments, but if the
correct assignment is missing, the substructure is incorrect.
Regardless of how many incorrect chemical shifts are included,
the assignment is correct as long as the correct chemical shift
assignment is present. It is true that if Velloquercetin were an
actual unknown, it would not be known that substructure 31 is
incorrect. However, given its lower estimated prediction
accuracy and lower information content (Figure 4), it is not
likely to be considered for initial study.
Substructures 24 and 28 are likewise identical in chemical

structure. Since both are correct in terms of chemical structure

and chemical shift assignment, the substructure with the higher
estimated prediction accuracy (substructure 24) is selected for
input to SESAMI. To elaborate on the role of chemical shift
assignment, it can be observed that given the parameters used
in estimating prediction accuracy (Section Prediction Accu-
racy), it is conceivable that of two correct, structurally identical
substructures, the one with the lower estimated prediction
accuracy could be richer in information content by virtue of the
following. A substructure whose carbon atoms have fewer chemical
shift assignments is less ambiguous and in that sense richer in
information. All it takes for a substructure to be designated correct
in terms of chemical shift assignment is for each carbon atom to
include the correct chemical shift assignment. It matters not how
many chemical shifts are assigned.
In selecting INFERCNMR-generated substructures to use as

input to SESAMI, the set of nondominated substructures whose
estimated prediction accuracy equals or exceeds that specified by
the user provides the starting point. The selection criterion is
simple: highest information content at highest available estimated

Table 9. Velloquercetin NMR Spectral Data

δC DEPT HMQC HMBC

155.73 S 7.69, 7.73
139.04 S 3.86
179.00 S
156.65 S 12.89
108.39 S 3.02, 3.38, 6.43, 12.89
166.41 S 3.02, 3.38, 6.48
157.25 S 6.48
106.44 S 6.48, 12.89
123.14 S 7.00
148.91 S 7.00, 7.69
151.45 S 7.79, 7.73
143.33 S 1.78, 3.02, 3.38
89.00 D 6.43 (s, 1H)
111.33 D 7.69 (d, 1H) 7.73
110.0 D 7.00 (d, 1H)
122.26 D 7.73 (dd, 1H) 7.69
88.36 D 5.35 (1H) 1.78, 3.02, 4.95, 5.10
112.92 T 4.95 (s, 1H) 1.78

T 5.10 (s, 1H)
30.67 T 3.02 (dd, 1H)

T 3.38 (dd, 1H)
17.13 Q 1.78 (s, 3H) 4.95, 5.10
60.36 Q 3.86 (s, 3H)
56.18 Q 3.96 (s, 3H)
56.19 Q 3.97 (s, 3H)

Table 10. SESAMI Results for Velloquercetin

INFERCNMR
substructure assigned

execution time
(min)

no.
structures

1 30.0 5000a

2 2 yes 5.5 1784
3 16 yes 10.0 5000a

4 24 yes 1.5 859
5 30 yes 12.5 3047
6 24, 30 no 611.0 4
7 24, 30 yes 1.5 2
8 2, 30 yes 1.5 14

aAborted after the generation of 5000 structures.

Figure 3. (a) Independent evaluation set. Structures shown are
complete. Terminal lines represent methyl groups. (b) Independent
evaluation set.
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prediction accuracy. That approach suggests the application of
substructures 16, 24 (substructure 28 has a lower estimated
prediction accuracy) and 30 since they each contain some unique
structural information. (Note the selection of substructure 24 over
substructure 2 (a user decision) even though substructure 2 has a
significantly higher estimated prediction accuracy, a difference of
over 4%. Substructure 24 still has a high estimated prediction
accuracy (94.1%) and is richer in information contentit has one
more methoxy methyl group than substructure 2.)
The structure-reducing impact of adding a single assigned

substructure, 16, 24, or 30, to the original SESAMI session
(Table 10, row 1) is shown in Table 10, rows 3, 4 and 5,
respectively. Substructures 24 and 30 separately significantly
reduce the number of candidate structures generated, from
greater than 5000 to 859 and 3047, respectively. The outcome
does suggest that substructure 24 is the richer in information
that does not duplicate information from the other spectral
sources used by SESAMI. However, at 859 generated
structures, the collective information pool is still not sufficiently
rich enough to provide a useful result for the chemist. The

number of candidate structures generated by adding sub-
structure 16 to the original input still exceeds 5000, not a useful
result. Thus, substructure 16 adds the least useful information in
elucidating the structure. The result is not surprising. An
examination of substructures 16 and 24, reveals a complete
aromatic ring in 24, but incomplete in 16. Substructure 16 does
include a carbon atom (see arrow in substructure 16) not present
in substructure 24, but that appears to be insufficient to offset the
absence of information in the incomplete aromatic ring.
Table 10 also reveals the significant impact of the additional

information content of substructure 24 relative to substructure
2, one additional methyl group. The former (row 4) produces
substantially fewer structures than the latter (row 2); 859 and
1784, respectively. Lower information content also increases
execution time.
The addition of assigned substructures 24 and 30 to the

SESAMI input (Table 10, row 7) leads to a dramatic reduction
in the reduction of the structures generated and a very useful
outcome for the chemist. Two structures are produced. It was
stated earlier that adding chemical shifts assignments to the
carbon atoms of the substructure, even ambiguous assignments,
that is, more than one chemical shift to one or more carbon
atoms, increases information content and enhances the
performance of SESAMI. This is consistent with the result of
a SESAMI session using both substructures 24 and 30, but
without chemical shift assignments (Table 10, row 6). Four
structures rather than two are produced and the execution time
required is increased by more than 2 orders of magnitude.
A session utilizing assigned substructures 2 and 30 as input

was run to compare the result to the session using assigned
substructures 24 and 30 to determine if the lower information
content of substructure 2 relative to substructure 24 would
impact the outcome. The combination of 2 and 30 did
substantially reduce the numbers of generated structures
compared to using each individual substructure separately
(Table 10, row 8), but not as effectively as the combination of
24 and 30 (Table 10, row 7).
Clearly, in the case of the Velloquercetin problem, the

information content produced by INFERCNMR complements
rather than duplicates the information content derived from the
current INTERPRET program in SESAMI. Therein lies the
power of INFERCNMR.
The two structures of Velloquercetin proposed by SESAMI

in the session described in Table 10, row 7 are shown in Figure 6.

Figure 4. Hasse diagram of structurally related INFERCNMR
substructures.

Figure 5. INFERCNMR Substructures 16 and 30 for Velloquercetin.

Figure 6. SESAMI output for velloquercetin.
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The structure at the top is the same as that assigned by the authors
of the original paper.49 Interestingly, it would appear that the
collective data reported in that paper does not rule out the second
structure generated by SESAMI. In reality, a structure assignment
should not be considered final until it can be demonstrated that
there is no other structure equally compatible with the available
information.

■ CURRENT RELATED WORK
The application of 13C NMR in the elucidation of the structure
of complex natural products has been extensively studied by a
Emerenciano and co-workers.53,54 They have described an
interpretive library search system which predicts the presence
of substructures in an unknown.55 The program is based on an
earlier algorithm24 with important modifications to address the
problem of combinatorial explosion which can occur in the case
of large molecules. Prediction reliability is based on the size of
the substructure. Chemical shifts are assigned to each carbon
atom of the substructure drawing on the work of Robien.56

■ CONCLUSIONS
A 13C NMR interpretive library search as a tool in the
elucidation of the structure of complex compounds is of value
only if its predicted substructures are reliable. Therefore, in
designing INFERCNMR, great emphasis was placed on the
ability of the program to estimate the accuracy of a predicted
substructure. The user can then make an informed decision
whether to consider it as a required substructure. The results
reported in Table 7 indicate an ANN model of substantial
predictive capabilities, providing sufficient discrimination
between valid and invalid retrieved substructures to meet the
needs of an interpretive library search system which can
function either as a standalone tool or as a component of a
comprehensive structure elucidation system. The development
of INFERCNMR was facilitated by a new approach to the
encoding of tautomeric structural units and by the application
of a target-weighted neural network.
In application to real-world, complex unknown structures,

where high prediction accuracy is important, an estimated
accuracy of 99% may be preferred by the user. Running
INFERCNMR at low tolerance leads to high recall, but a
considerably smaller number of retrieved substructures. At
higher tolerances, more substructures are retrieved, but recall
will be less. In solving complex structure elucidation problems,
even one correct substructure of six or more carbon atoms can
provide substantial information content provided it does not
duplicate information from other sources. In our experience, an
examination of the nondominated list of substructures
produced at an accuracy of 90% and above can be an
informative exercise. Recall that INFERCNMR, like any
reference library-based tool, can only retrieve substructures
which are present in the reference compounds of the library.
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