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Abstract

A method based on the determination of maximum common substructures is applied for the generation of
substructures which are characteristic for a given set of molecular structures. The molecular structures are from
hitlists obtained by spectral library searches; the hitlists contain those reference compounds, which have infrared
spectra most similar to that from the query compound. The influences of various parameters of this method are
investigated with the aim to improve the relevance of the obtained substructures for the structure of the query
compound. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The most widely used technique for computer-as-
sisted identification of organic compounds is spectra
library search with mass spectra (Varmuza, 2000) or
infrared spectra (Luinge, 1990). The resulting hitlist
typically contains some tens of reference spectra most
similar to the spectrum of the unknown. If the un-
known is contained in the spectral library a correct
identification is often possible; presence of this situation
is usually indicated by a high value of the spectra
similarity measure for the first hit. If it has to be
assumed that the unknown is not a member of the used
library the hypothesis is usually applied that similar
spectra indicate similar chemical structures (Baumann
and Clerc, 1997; Clerc, 1987). Based on this assumption

the spectroscopist evaluates structures and spectra in
the hitlist with the aim to construct candidates for the
unknown molecular structure of the query compound
or at least to get hints, which substructures may be
present and which may be absent.

Recently a method based on the concept of maxi-
mum common substructures (MCS) has been presented
as an aid to evaluate hitlists with infrared spectra
(Varmuza et al., 1998, 1999). This automatic method
generates a set of substructures from the hitlist struc-
tures, and it has been shown that these substructures
are often characteristic for the molecular structure of
the unknown. Extraction of substructure information
from the hitlist structures has the advantage to be
independent from predefined substance classes and is a
complementary method to other computer-assisted ap-
proaches such as application of correlation tables (Af-
folter et al., 1997; Debska et al., 1997), multivariate
linear classifiers (Luinge et al., 1995) or neural network
classifiers (Ricard et al., 1993; Novic and Zupan, 1995;
Klawun and Wilkins, 1996; Munk and Madison, 1996).
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Other strategies based on the application of MCSs
have been described for mass spectra (Cone et al., 1977;
Lebedew et al., 1981; Scsibrany and Varmuza, 1992,
1993; Lebedew and Cabrol-Bass, 1998), 13C-NMR spec-
tra (Chen and Robien, 1994) and for IR spectra in
combination with the application of fuzzy logic (Ehren-
treich, 1997a,b, 1999).

In this paper a systematic exploration of the appli-
cability of the MCS concept for structure elucidation of
organic compounds based on IR spectra is presented. A
quantitative measure for the reliability of the obtained
substructure set is proposed, and the influence of
parameters on the contents of these sets is studied.

2. Spectral libraries and software

The IR database used consists of 13 484 full-curve
spectra for the spectral range 500–3700 cm−1 with a
sampling interval of 4 cm−1, corresponding to 801 data
points. Origin of the spectral and structural data is the
SpecInfo IR database (SpecInfo, 1996). The format of
the original and the converted data has been described
previously (Penchev et al., 1999; Varmuza et al., 1998).

The software IRSS (Penchev et al., 1996, 1998) was
used for spectra similarity searches in the IR spectra
library. Seven different algorithms for the comparison
of IR spectra are implemented (Varmuza et al., 1998)
comprising three methods for matching peak list data,
and four methods for comparing full spectral curves.
Software IRSS is available from author P.N.P.

The software ToSiM (Scsibrany and Varmuza 1994)
was used for the evaluation of hitlist structures. It
contains tools for the investigation of topological simi-
larities in molecules, such as cluster analysis of chemical
structures, as well as determination of large and maxi-
mum common substructures in a given set of structures.
The software SubMat (Varmuza and Scsibrany, 2000)
was applied for automatic determination which of given
k substructures are contained in given n molecular
structures. Software ToSiM and SubMat are available
from author K.V.

All computations have been performed on Pentium
personal computers, 300 MHz, running under MS-Win-
dows 95 or NT.

3. Methods

3.1. Characteristic substructures

The maximum common substructure (MCS) of two
chemical structures is defined here as the largest con-
nected substructure that is present in the two given
structures. The MCS can be considered as a measure
and a description of the similarity of two structures.

The MCS of a set of n structures may be very small or
may even not exist if one or more exotic structure is
contained in the set, a situation common with spectral
hitlists. Characteristic structural properties of a set with
n structures can be described by a set of appropriate
substructures; in the applied approach each of them is
the MCS of a pair of the given molecular structures
(Scsibrany and Varmuza 1992; Varmuza et al., 1998,
1999). The applied method to generate a set with
characteristic substructures has been described previ-
ously (Varmuza et al., 1998) and is only briefly summa-
rized here. For each of the n(n−1)/2 possible pairs of
molecular structures the MCS is determined; then for
each MCSi the number of occurrences, ni (frequency),
in the n structures is counted. Finally the MCSs are
ordered by their decreasing ranking weight Ri as
defined in Eq. (1). The ranking considers both the
frequency and the size of the substructures (which is
given by the number of non-hydrogen atoms).

Ri= (1− f ) ni/n+ f Ai/Amax (1)

Ai is the number of non-hydrogen atoms in MCSi; Amax

is the maximum number of non-hydrogen atoms in the
n investigated molecular structures; f is a user-ad-
justable factor ranging between 0 and 1. If f is zero only
the frequency counts for the ranking; if f is 1 only the
size is considered; the influence of this parameter is
reported in Section 4. The obtained set of characteris-
tic, large, and frequently occurring substructures char-
acterizes common structural properties of the molecular
hit list structures; the result is only less affected by
outlier structures.

The isomorphism of substructures and the determi-
nation of MCSs are controlled by the parameters listed
in Table 1. The IR spectrum of a compound depends
on both the masses of the atoms and on the strengths
of the bonds between them. Taking into account these
facts the parameters were chosen as listed. The influ-
ence of two parameters marked by ‘varied’ is investi-
gated in Section 4.

3.2. Effecti6eness of a set with characteristic
substructures

A library search algorithm is effective in the view of
this work if the hitlist structures resemble the structure
of the unknown compound to a great extent. A mea-
sure of effectiveness, E, is defined to characterize semi-
quantitatively how well the found substructures fit to
the query structure.

E=% pi ni Ai/(k n A) i=1 ,. . . , k (2)

n is the number of used hitlist structures; k is the
number of characteristic substructures derived from the
hitlist structures by the described MCS approach; ni
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Table 1
Parameters for the MCS algorithm

No. Parameter Values Used value

Yes/No1 YesAtom type to be checked
Heteroatoms considered as equivalent2 Yes/No No

Yes/NoTopology of atoms to be checked (atom is part of a ring, of an aromatic ring, of a chain) No3
Equal number of H-atoms on non-hydrogen atoms to be checked4 Yes/No Varied
Bond type to be checked5 Yes/No Yes

Yes/NoMultiple bonds considered as equivalent No6
2–107 2Minimum number of non-hydrogen atoms in a MCS
0–1 Varied8 Factor f for ranking the MCSs (Eq. (1))

and Ai are frequency and size of substructure i, respec-
tively; A is the size of the query structure (measured by
the number of non-hydrogen atoms). The penalty co-
efficient pi is set to 1 if substructure i is present in the
query structure, and to −1 otherwise. The sum is
calculated from all k substructures. Division by A
makes E less dependent of the size of the query struc-
ture. The maximum value of E is 1, however, the
minimum value is not defined. Scaling of E for instance
to the range 0–1 would be possible by using a penalty
coefficient of zero (instead of −1) in the cases the
substructure is not present in the query structure. A
disadvantage of this penalty value is that the size of an
erroneous substructure would have no influence on E ;
for this reason a not-defined minimum value for E
seems to be the better choice. The size and frequency of
the found characteristic substructures mainly influence
the used effectiveness measure. The structural diversity
of the substructures was not considered in this work.

For a given unknown the contents of the set with
characteristic substructures in general depends on: (1)
the quality of the spectral library; (2) the structural

diversity of the reference compounds with respect to the
query structure; (3) the size of the library; (4) the
spectral similarity measure applied; (5) the number of
hitlist structures used, and; (6) the parameters used for
the determination of MCSs. The influence of different
spectral similarity measures, of the number of hitlist
structures used, and of some MCS parameters are
reported Section 4.

4. Results and discussion

4.1. Library searches

Ten compounds randomly selected from the library
were chosen as ‘unknown’ query compounds (Table 2).
The number of non-hydrogen atoms in these com-
pounds is between 5 and 38. The corresponding IR
spectra were searched in the library using the spectra
similarity criteria described below. The first hit (exact
match) was removed from the hitlist, and the remaining
compounds were used for the determination of MCSs.

Table 2
Ten compounds used as unknowns; size of molecules is measured by the number of non-hydrogen atoms

Compound name BCAS registry number\No Molecular Size
formula

1 5C4H11NButylamine B109-73-9\
1-Pentanol, 5-bromo B34626-51-2\2 C5H11OBr 7

83 Tetrahydropyran-4-methanol B14774-37-9\ C6H12O2

1,3-Dioxolane-4-methanol, 2-vinyl- B4313-32-0\4 C6H10O3 9
Benzene, 1-methoxy-3-(1-propenyl)- B20112-91-8\5 C10H12O 11
1-Amino-naphthalene B134-32-7\6 C10H9N 11

7 1-Hexanone, 1-(3-pyridinyl)- B81418-03-3\ 13C11H15NO
8 4,7-Methano-1H-indene, 6-(diethoxymethyl)-3A,4,5,6,7,7A-hexane B67633-93-6\ C15H24O2 17
9 1H-1,2,4-Triazole, 1-[2-[3-(2-fluorophenyl)-2-methylpropoxy]-3,3-dimethyl-1-butenyl]- 23C18H24N3OF

B101975-44-4\
10 Proline, 1-benzoyl-4-(2,5-dichlorobenzoyl)-3-(1,1-dimethylethyl)-5-phenyl, ethyl ester 38C31H31NO4Cl2

B103430-68-8\
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Table 3
Effectiveness E (Eq. (2)) of sets containing characteristic substructures for the ten unknowns listed in Table 2a

Effectiveness ECompound No.

SP SD AD PMCC m(1–4)

1 −0.547 −0.603 −0.549 −0.506 −0.483 −0.548
−0.132 −0.134 −0.115−0.127 −0.2232 −0.130

0.1193 0.119 0.039 0.031 −0.097 0.079
4 0.369 0.359 0.365 0.308 −0.243 0.362

0.008 −0.003 −0.045−0.060 −0.0335 −0.024
−0.0366 −0.048 −0.061 −0.047 −0.261 −0.048

0.086 0.061 0.0967 0.0670.121 0.091
0.232 0.232 0.2410.237 0.0108 0.235

0.0609 −0.019 0.083 0.088 −0.028 0.072
0.099 0.07910 0.0970.102 0.080 0.098

−0.048 −0.061Low quartile −0.047−0.060 −0.243
0.047 0.050Median 0.0600.081 −0.065
0.119 0.083 0.0970.121 0.010High quartile

a Five different measures for spectral similarity (CC, SP, SD, AD, PM) have been applied. The first four similarity measures give
similar results (CC is best); measure PM is significantly worse. m(1–4) is the median of the first four measures. Compound 4 and
1 yielded best and poorest results, respectively.

4.2. Comparison of spectral similarity measures

Four different similarity measures for full-curve spec-
tral matches have been tested (Varmuza et al., 1998):
correlation coefficient (CC), scalar product (SP), sum of
squared differences (SD), and sum of absolute differ-
ences (AD); additionally a simple peak-matching al-
gorithm (PM) for a forward peak search (Clerc, 1987)
was used. For each unknown the IR spectrum was
searched in the library applying all five-similarity mea-
sures separately; size of the hitlist in this investigation
was 50 reference compounds. For each resulting sub-
structure set the effectiveness E (Eq. (2)) was deter-
mined; the results are summarized in Table 3. The
median of the effectiveness is highest for hitlists ob-
tained with the correlation coefficient measure, and
lowest for applying the peak-matching algorithm. This
result is confirmed by a Wilcoxon matched-pairs test
(Massart et al., 1997). Each of the four full-curve
spectral similarity measures gives significantly better
effectiveness than the peak-match algorithm (at a maxi-
mum statistical risk a of 0.1). These results are in
agreement with previous reports (Ehrentreich 1997b;
Penchev 1998; Varmuza et al., 1998) showing that the
peak-match criterion usually gives good results only for
spectral identity searches with the unknown contained
in the library. The performances of the four similarity
measures for full-curve data decreases in the order
CC\AD\SD\SP but only CC and SP exhibit a
statistically significant difference. The effectiveness val-
ues obtained with the five spectra similarity measures
exhibit high correlations but show great differences for

the ten unknowns. The medians, m(1–4), calculated
from the similarity measures CC, AD, SD and SP show
that compounds 4 and 8 yielded best results while
compound 1 is an outlier with worst effectiveness. For
compound 4 (best results) and compound 1 (poorest
results) the ten best ranked characteristic substructures
(using the correlation coefficient measure for spectral
similarity) are displayed in Fig. 1. For compound 4 all
ten substructures are part of the query structure; for
compound 1 only three substructures are contained in
the query structure, the other seven are very similar to
it.

Use of the intersection or the union of several
hitlists—which have been obtained by applying differ-
ent similarity measures — does not improve the results.
In general, intersecting hitlists produces larger substruc-
tures than single hitlists. These carry more structural
information than smaller ones, but on the other hand
erroneous substructures are also larger and thus de-
crease the effectiveness; consequently the results for
intersecting hitlists are typically the average of the
effectiveness values from the single hitlists.

4.3. Optimum number of hitlist structures

The use of a too short hitlist for the generation of
characteristic substructures may cause erroneous results
if the query compound is not contained in the library.
A too large hitlist may result in rather small and less
informative substructures. In an extreme case the whole
spectral library may be considered as the hitlist; of
course this approach is useless because the found sub-
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Fig. 1. Examples for characteristic substructures found by the MCS approach. (A) compound 4 (highest effectiveness); (B)
compound 1 (lowest effectiveness). Compounds are listed in Table 2. Y, substructure is part of the query structure, N, substructure
is not part of the query structure; the number given is the frequency (number of hitlist structures containing the substructure).
Spectral similarity measure was the correlation coefficient, size of hitlist was 50, factor f for ranking was 0.3.

structures are characteristic for the library but not for
the query compound. Based on these considerations an
optimum number of hitlist structures may exist yielding
maximum effectiveness. This assumption has been
tested using the IR spectra from the ten compounds
listed in Table 2; the spectral similarity measure was the
correlation coefficient and the size of the hitlist was
varied between 20 and 70. The mean, Em, of the effec-
tiveness values for the ten unknowns is plotted versus
the number of used hits, n, in Fig. 2. Maximum perfor-
mance is obtained with approximately 50 reference
compounds in the hitlist. Considering that the optimum
size of the hitlist also depends on the size and diversity
of the library a range of 40–60 reference spectra can be
recommended for the hitlist to be used in the MCS
approach.

4.4. Parameter for MCS determination

The MCS of two structures depends on the used
isomorphism criteria as listed in Table 1; some of them
are relevant to IR spectroscopy. For instance, many
characteristic bands in IR spectra are due to the vibra-
tions of X�H bonds in the molecules. Therefore one
may expect that the obtained substructures are more

informative if the isomorphism criterion ‘equal number
of H-atoms on non-hydrogen atoms’ is set to ‘Yes’.
This assumption has been tested using the IR spectra
from the ten compounds listed in Table 2 as unknowns
for library search; the spectral similarity measure was
the correlation coefficient. From hitlists containing 50
reference compounds the MCSs have been determined

Fig. 2. Averaged effectiveness, Em, versus number of used
hitlist structures, n.
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Fig. 3. Averaged effectiveness, Em versus parameter f for
ranking the maximum common substructures (Eq. (1)).

substructures, which are often relevant to the query
structure. For an improvement of the method an effec-
tiveness measure has been defined to judge semi-quanti-
tatively the structural relevance of the derived
substructures. Using this measure five spectral similar-
ity criteria have been compared; best results were ob-
tained with a criterion based on the correlation
coefficient for full-curve spectra. The optimum size of
the hitlist was found to be about 50 reference com-
pounds. Also some parameters that control the determi-
nation of maximum substructures influence the
effectiveness; tests show that the frequency of the sub-
structures in the hitlist structures is more important
than the size of the substructures.

The results from this investigation lead to an im-
proved method for a structure-oriented evaluation of
hitlists from IR library searches. The set of substruc-
tures automatically obtained by the MCS approach is
capable to assist in structure elucidation of unknowns,
which are not contained in the spectral library.
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