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Abstract

Three types of spectral features derived from infrared peak tables were compared for their ability to be used in automatic

classi®cation of infrared spectra. Aim of classi®cation was to provide information about presence or absence of 20 chemical

substructures in organic compounds. A new method has been applied to improve spectral wavelength intervals as available

from expert-knowledge. The resulting set of features proved to be better than features derived from the original intervals and

better than features directly derived from peak tables. The methods used for classi®cation were linear discriminant analysis

and a back-propagation neural network; the latter gave a better performance of the developed classi®ers. # 1999 Elsevier

Science B.V. All rights reserved.
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1. Introduction

The methods applied for computer-assisted inter-

pretation of infrared (IR) spectra can be classi®ed into

three groups [1]:

1. knowledge-based systems in which spectroscopic

and chemical expertise is encoded to assist spectra

interpretation,

2. the routine approach of searching in spectral

libraries, and

3. pattern recognition techniques which have the

ability to recognize structural properties by classi-

fying spectral data.

Nowadays there is a renaissance of the last group of

methods through the use of arti®cial neural networks

(ANNs) [2,3]. Computational ANNs are known to

have the capability for performing complex mappings

between input and output data. They can be applied to

different types of problems: classi®cation of objects,

modeling of functional relationships, storage and

retrieval of information, and representation of large

amounts of data [4,5]. This promises a high potential

for processing IR data; recent applications cover

structure elucidation from IR spectra [6±20], library

search in spectral databases [21±23], and peak recog-

nition in IR spectra [24].

The main limitations of the classi®cation models

mentioned above are related to the used spectral

features. In this article we introduce a set of spectral

features which are based on expert knowledge in IR
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spectroscopy and have been improved by a new

chemometric approach for feature adaptation and

selection. Classi®cation of IR spectra by using these

features is compared with classi®cation using features

which have been directly derived from peak tables.

Furthermore results obtained by an ANN classi®cation

algorithm are compared with those obtained by linear

discriminant analysis (LDA). As a result of the work a

program module for IR spectra classi®cation has been

developed and implemented in the library search soft-

ware IRSS [25].

2. Spectra and software

SpecInfo IR Library. SpecInfo [26] is a multispec-

tral database system, running on workstations. The IR

database used contains 13484 full curve spectra

together with chemical structures and was available

in the JCAMP-DX format. The original spectral range

is 400±4000 cmÿ1 with a sampling interval of

1.93 cmÿ1 corresponding to 1867 data points; the

absorbance values are normalized to the range

0±999. IR spectra, structural data, molecular formulas,

and compound names were converted for use in the

software TOSIM [27]. The IR spectral data were repre-

sented as peak tables containing positions and inten-

sities of spectral bands; the last being the absorbance

values normalized to the range 0±100. The threshold

value used for peak-picking was 1% of the absorbance

of the maximum peak in the spectrum; consequently

the minimum peak intensity is equal to 1.0.

TOSIM is a software operating under MS-DOS [27]; it

contains tools for the investigation of topological

similarities in molecules, such as cluster analysis of

chemical structures, and determination of maximum

common substructures [28]. The implemented sub-

structure search was used to prepare the learning and

test sets for classi®er development.

IRIS is a software developed for the application of IR

classi®ers in practical laboratory situations; it operates

under MS Windows and can be started directly from

the IR library search system IRSS [25]. The implemen-

ted spectral classi®ers give evidence for presence or

absence of chemical substructures in compounds of

unknown chemical structure. IRIS and the software for

classi®er development (including spectra transforma-

tion and ANN classi®cation) were written in Borland

Pascal 7.0. All computations have been performed on

80 586 computers, 200 MHz, running under MS Win-

dows 95.

3. Methods

3.1. Spectral features

Spectral features are a set of numbers (a vector) that

characterize a spectrum. Most of the recent works in

IR spectra classi®cation use features based on pre-

determined ®xed wavelength intervals. We introduce a

different approach by choosing the wavelength inter-

vals (�1, �2) individually for each classi®ed substruc-

ture and by de®ning two types of features.

Feature INT(�1, �2) is the intensity of a spectral

band as given in Eq. (1), with Amax being the max-

imum absorbance in this interval.

INT��1; �2� � Amax=100

0; if no peak in ��1; �2�
�

:

(1)

This feature type is used in most knowledge-based

IR spectra interpretation systems (see references in [1]

and in works applying ANNs [6,8,10]). Munk et al.

[6,8] use the transmittances of spectral bands instead

of absorbances.

Feature L12(�1, �2) is calculated from the logarith-

mic absorbance ratio as given in Eq. (2), with Asec

being the absorbance of the second highest peak in the

interval.

L12��1; �1; �

� �aÿ lg�Amax=Asec��=a; a � 2

0; if less than two peaks are present in �v1; v2�:
�

This feature considers that some chemical sub-

structures give rise to two or more characteristic

bands in a given spectral interval. A similar feature

was successfully used for substructure classi®cation

from mass spectra [29]. The constant a in Eq. (2)

scales the feature to the range 0±1. Because maximum

and minimum absorbances were 100 and 1, respec-

tively, the value of a has to be equal to 2. The

maximum value for L12 is reached when the two

largest peaks in the interval are equally sized

(Amax � Asec), Fig. 1.
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Selection of appropriate wavelength intervals is a

crucial task in feature generation. In this work three

approaches have been applied. For expert-based fea-

tures the intervals have been taken from literature on

spectrum-structure correlations [30]. For adjusted

expert-based features the interval limits have been

optimized for maximum discrimination power of

the features; details of this new method are described

below. For comparison a third group of ®xed-interval

features has been generated by dividing the range

4000±400 cmÿ1 into prede®ned 256 intervals [6]

and calculating feature INT(�1, �2) for each of them.

3.2. Classifier development

The general scheme of classi®er development is

shown in Fig. 2. The described procedure has been

performed separately for each of the investigated 20

substructures as follows.

3.2.1. Learning and test set

First step is the generation of a learning and a test

set for the substructure under study. Substructure

searches in the database followed by a random selec-

tion of compounds results in two ®les, one from

compounds not containing the substructure (class

1), the other from compounds containing the sub-

structure (class 2). Typical size of the ®les is 500

spectra each; for some substructures, however, only a

smaller number of compounds was available in the

database. Half or approximately half of each class is

used in the learning and in the test set, respectively

(Table 1). Isotopically labeled compounds and com-

pounds containing metal atoms have been excluded.

3.2.2. Adjustment of intervals

Next step is feature generation which requires the

de®nition of wavelength intervals (�1, �2). We assume

that published and widely accepted substructure-spe-

ci®c intervals are appropriate as initial wavelength

regions for feature generation.

For expert-based features published intervals [30]

have been directly used for feature generation. How-

ever, it has been shown [31] that IR correlation tables

alone cannot be reliably used for automatic substruc-

ture recognition because the signal often lies outside

the predicted range. Therefore for adjusted expert-

based features the original intervals were changed by

Fig. 1. Examples for feature L12(�1, �2), Eq. (2), calculated from different peak absorbances in a wavelength interval.

Fig. 2. Scheme of classifier development. Single-line boxes denote

data, others denote data processing.
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an automatic procedure with the aim to improve

classi®cation results. The two parameters to be opti-

mized were the lower end (�2) and the width (��) of

the considered interval. The allowed ranges of these

parameters were restricted by �1��MAX, �2��MIN,

and ��MIN������MAX (see the example given

below).

The used optimization criterion F is based on the

Fisher ratio [32]; it is a measure of the discriminating

power of a feature (Eq. (3)).

F � g�A2 ÿ A1�2=�S2
2 � S2

1�; (3)

where A1 and A2 are the arithmetic means of the

feature for classes 1 and 2, respectively; S1 and S2

are the corresponding standard deviations; g is equal

to sign(A2ÿA1). In a search for a highly discriminating

and also spectroscopically relevant interval (�1, �2) it

is essential to consider the sign of the Fisher ratio as is

demonstrated by the following examples. Assume the

optimum interval for a feature of type INT(�1, �2),

Eq. (1), is searched. Evidently an interval would be

best if it often contains a peak in spectra from class 2

(substructure present) but does not contain a peak in

spectra from class 1; this favorable situation is

re¯ected by a large positive value of F. On the other

hand if spectra from class 2 would only rarely contain

a peak in an interval ± in comparison to spectra of class

1 ± a large negative value is obtained for F. The same

reasoning can be applied to features of type L12,

Eq. (2), regarding the presence of two peaks in the

interval.

Tests have shown that the response surface F(�1, �2)

usually is not smooth. Therefore an exhaustive search

has been applied to ®nd that pair of values for �1 and

�2 which has the maximum value of F for a given

training set. The following example describes a typical

feature generation and optimization.

The interval 3000±2840 cmÿ1 is considered to be

characteristic for the methyl substructure [30]. For an

optimization of this interval it has ®rst been widened

to the range �MIN�2800 cmÿ1 and �MAX�3050 cmÿ1.

Minimum and maximum interval width have been set

to ��MIN�20 cmÿ1 and ��MAX�250 cmÿ1; step size

for varying �� has been set to 1 cmÿ1. In the exhaus-

tive search ®rst all intervals of width 20 cmÿ1 are used

for feature calculation: (2820, 2800), (2821, 2801), . . . ,

(3050, 3030); then all intervals of width 21, 22, . . . ,

250 cmÿ1 are tested. For each interval F is determined

Table 1

Classified chemical substructures

No Substructure n L1 L2 T1 T2

1 Methyl 9072 250 250 250 250

2 Methylene 11285 250 250 250 250

3 Benzene ring, any subst. 8499 250 250 250 250

4 Ortho substituted benzene 1496 250 250 250 250

5 Meta substituted benzene 657 250 250 250 250

6 Para substituted benzene 2704 250 250 250 250

7 Mono substituted benzene 2087 250 250 250 250

8 Isopropyl 760 250 250 250 250

9 Tertiary-butyl 952 250 250 250 250

10 Methoxy 2061 250 250 250 250

11 cis/trans C=C double bond 1345 250 250 250 250

12 Vinyl 471 235 235 235 235

13 Carboxylic acid 868 250 250 250 250

14 Aldehyde 596 240 240 240 240

15 Primary alcohol 539 215 215 215 215

16 Secondary alcohol 583 235 235 235 235

17 Tertiary alcohol 222 110 110 107 107

18 Phenol 561 250 250 250 250

19 Primary amine/amide 1284 250 250 250 250

20 Secondary amine/amide 1976 250 250 250 250

n: Number of occurrences in the SpecInfo database; L1: number of compounds not containing the substructure in the learning set; L2: number

of compounds containing the substructure in the learning set; T1, T2: the corresponding numbers for the test set.
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from the learning data and the intervals are ranked by

their decreasing values of F. To avoid highly corre-

lated features only intervals are put into the ordered

list which do not overlap more than 10% with any of

the higher ranked intervals.

In this example 26 881 intervals have to be tested,

requiring 10 min computation time for a learning set

with 250 spectra in each class. Table 2 contains

selected results of this search; the interval with the

maximum F for feature INT(�1, �2) was found to be

�1�2996 cmÿ1, and �2�2944 cmÿ1. The found opti-

mal interval limits typically vary by 1±2 cmÿ1 when

different learning sets are used.

3.2.3. Training of classifiers

The next step in classi®er development is the train-

ing of an ANN or the application of LDA. All features

in the learning set were scaled to zero mean and unit

variance. The means and variances of the learning set

were used to transform the data in the test set in the

same way. For the training of an ANN the sequence of

spectra in the learning set was randomized. Each

chemical substructure was classi®ed with a separate

neural network.

(a) The applied ANN was a feed-forward one with

one hidden layer and employing a back-propagation-

of-error algorithm [3,4]. A sigmoidal squashing func-

tion was used to transfer the net input Netj of each

neuron according to Eq. (4).

f �Netj� � 1=�1� exp�ÿ�j�Netj � �j���: (4)

The parameters �j were set to unity without loss of

generality [2], and the threshold parameters �j were

optimized during the learning process. The number of

input neurons was equal to the number of used spectral

features. The network coef®cients and offsets have

been initialized with random values between ÿ1 and

�1. The number of hidden neurons was varied

between 2 and 20 to determine the optimal value

for each substructure separately. The only output

neuron indicates the class membership applying the

target values 0 or 1 for absence or presence of the

classi®ed substructure, respectively. Constant values

of 0.6 for the learning rate, and 0.4 for the momentum

factor were used.

The stop criterion used is based on the mean

squared error (MSE), Eq. (5).

MSE �
X
�Ti ÿ Oi�2

h i.
N: (5)

The sum is taken over all N objects in the learning

set; Oi is the actual ANN output for spectrum i; Ti is

the corresponding target value. Tests have shown that

the minimum MSE does not correspond to the best

classi®cation performance because of over-training.

Therefore, the relative change of MSE has been used

as the stop criterion. The training was ended when the

change of MSE was less than 0.05% in three con-

secutive sessions. This method avoids the undesired

effect that the more frequent class in the overlap

region is classi®ed correctly at the expense of the less

frequent class. No dif®culties with a too early end of

the training (because of a ¯at region of MSE) has been

encountered with the used data. A similar problem of

ANN training has been discussed by Wilkins et al.

[16].

(b) LDA classi®ers have been calculated by the

standard procedure as already applied for MS classi-

®ers [29].

Table 2

Optimization of the wavelength interval (�1, �2) for feature INT(�1, �2) when classifying a methyl group

�1 �2 F Remarks

3000 2840 0.192 Original expert-based interval

2820 2800 0.0024 First tested interval

2821 2801 0.0012 Second tested interval
..
.

3050 2800 0.170 Last tested interval

2996 2944 0.506 Best interval

2887 2868 0.236 Second best interval

F: optimization criterion (signed Fisher ratio).
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3.2.4. Test of classifiers

In the ®nal step classi®cation thresholds are deter-

mined and the performance of the classi®er is eval-

uated. The classi®er (either an ANN or a LDA

classi®er) is applied to the spectra of the test set

resulting in a value for the discriminant variable z

for each test spectrum. Fig. 3 shows typical probabil-

ity density distributions q1(z) and q2(z) for class 1 and

class 2, respectively, obtained by an ANN classi®er.

For LDA classi®ers these distributions are often bell-

shaped [29]. Many substructure classi®ers, linear as

well as non-linear, either for MS or IR, exhibit a

considerable overlap of the classes. Therefore a simple

yes/no classi®er is not applicable. This problem can be

partly overcome by estimating the classi®cation per-

formance as a function of the discriminant variable

[29]. LDA and ANN classi®ers have been treated by

the same method.

Let Nk,m(zm) be the number of objects from the test

set belonging to class k and being classi®ed to class m

when thresholds zm have been applied as follows:

IF z � z1 THEN assign spectrum to class 1,

IF z � z2 THEN assign spectrum to class 2,

ELSE reject classi®cation.

Assuming equal a priori probabilities for both

classes precisions P1(z1) and P2(z2) of classi®cation

answers can be estimated by Eqs. (6a) and (6b).

P1�z1� � 100 N1;1�z1�=�N1;1�z1� � N2;1�z1��; (6a)

P2�z2� � 100 N2;2�z2�=�N2;2�z2� � N1;2�z2��: (6b)

The precisions depend on the used thresholds z1 and

z2; for practical applications classi®cation thresholds

are applied that yield a precision of 90% or 95%.

Increasing the interval between z1 and z2 usually

increases the precisions; however, at the cost of more

non-classi®ed spectra. Therefore, also the recall

values of a classi®er have to be considered during

evaluation. Recalls R1(z1) and R2(z2) are de®ned as the

percentage of correctly classi®ed spectra of class 1 and

class 2, respectively, at a given precision and thus

depend on the thresholds z1 and z2 (Eqs. (7a) and (7b)).

R1�z1� � 100 N1;1�z1�=N1; (7a)

R2�z2� � 100 N2;2�z2�=N2; (7b)

where N1 and N2 are the number of test objects in class 1

and class 2, respectively. For an evaluation of the prac-

tical applicability of a classi®er the recalls at a precision

of 90% have been used in this work. For the determina-

tion of the optimum number of hidden neurons the mean

of R1(z1) and R2(z2) has been considered. Application of

the test set for the determination of the number of hidden

neurons and the determination of the classi®cation

thresholds leads to some overestimation of the classi®er

performances; however, the comparison of the different

feature sets may be only less affected.

4. Results and discussion

4.1. Training

Twenty chemical substructures which are infrared

active were selected for this study (Table 1) and classi-

®ers have been developed using three sets of features.

(a) For expert-based features Eqs. (1) and (2) were

applied to the characteristic spectral intervals given in

[30]. For the classi®cation of substructures containing

a benzene ring feature L12 has been calculated for the

interval 1625±1475 cmÿ1 instead of (1625,1575) and

(1525,1475), [30]. The number of features in this set

depends on the number of characteristic intervals and

was between 4 and 13 (Table 4).

(b) The set with adjusted expert-based features has

been generated as follows: The characteristic intervals

given in [30] were ®rst widened at both ends by

50 cmÿ1, then the intervals were optimized separately

for each feature type as described before, and features

according to Eqs. (1) and (2) were calculated. For the

development of classi®ers only features with F>0.01

were considered. Table 3 contains the adjusted inter-

Fig. 3. Probability density distributions q1 (z) and q2 (z) of class 1

and class 2, respectively, for the discriminant variable z. Data: test

set, ANN classifier for mono substituted benzene rings.
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Table 3

Adjusted expert-based features for 20 substructures

F Type Interval

Methyl

0.506 INT 2996±2944

0.236 INT 2887±2868

0.147 INT 1379±1357

0.545 L12 3015±2927

0.322 L12 2945±2868

0.292 L12 1404±1357

Methylene

1.017 INT 2984±2927

0.573 INT 2940±2839

0.112 INT 2861±2790

0.103 INT 1369±1364

2.257 L12 3007±2855

0.212 L12 1468±1367

Benzene

0.102 INT 3070±3055

0.331 INT 1617±1588

0.758 INT 1550±1471

0.260 INT 870±820

0.617 INT 838±739

0.353 INT 716±670

0.426 L12 3136±3023

1.672 L12 1616±1476

0.725 L12 766±670

0.410 L12 883±783

Ortho subst. benzene

0.170 INT 1602±1575

0.111 INT 1490±1483

0.226 INT 1473±1433

0.976 INT 764±717

0.297 L12 1634±1530

0.385 L12 1508±1433

0.337 L12 797±706

0.136 L12 710±650

Meta subst. benzene

0.179 INT 1595±1571

0.243 INT 1504±1472

0.099 INT 1473±1428

0.068 INT 848±837

0.173 INT 808±769

0.051 INT 751±730

0.321 INT 704±673

0.361 L12 1606±1486

0.258 L12 1504±1421

0.187 L12 905±763

0.300 L12 802±680

Para subst. benzene

0.205 INT 1613±1601

0.578 INT 1519±1490

Table 3 (Continued )

F Type Interval

0.788 INT 853±821

0.100 INT 826±765

0.076 L12 3112±2990

0.092 L12 1616±1564

0.224 L12 1544±1459

0.310 L12 852±802

Mono subst. benzene

0.432 INT 3070±3055

0.283 INT 3050±3022

0.093 INT 1605±1594

0.450 INT 1500±1488

0.247 INT 1459±1443

0.829 INT 770±699

2.514 INT 705±683

1.241 L12 3073±3024

0.269 L12 1609±1576

0.527 L12 1507±1445

0.644 L12 770±687

Isopropyl

0.633 INT 2989±2954

0.411 INT 2885±2864

0.133 INT 1396±1383

0.154 INT 1379±1366

0.055 INT 1222±1140

0.441 L12 2985±2864

0.584 L12 1399±1358

0.065 L12 1053±1023

Tertiary butyl

1.414 INT 2988±2935

0.304 INT 2950±2869

0.842 INT 2876±2859

0.215 INT 1483±1476

0.183 INT 1396±1392

1.095 INT 1371±1361

0.405 L12 2981±2858

0.248 L12 1484±1457

1.331 L12 1405±1360

0.068 L12 1250±1196

Methoxy

0.125 INT 3019±2990

0.138 INT 2938±2916

0.239 INT 2893±2850

0.211 INT 2841±2831

0.062 INT 1466±1448

0.210 INT 1445±1432

0.300 INT 1288±1036

0.389 L12 3019±2940

0.189 L12 2938±2850

0.170 L12 1466±1432

0.195 L12 1219±1110
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vals for all 20 substructures together with the Fisher

ratios of the generated features. The number of fea-

tures in this set depends on the number of character-

istic intervals and was between 2 and 11 (Table 4).

(c) For the generation of ®xed-interval features the

spectral range 400±4000 cmÿ1 was divided into 256

intervals with the widths continuously increasing with

growing wave number [6]. It has been reported [6,8]

that classi®ers developed with features from such

intervals are better than those based on features from

equally sized intervals. Features have been calculated

by applying Eq. (1) to each interval; the 20 features

with highest absolute values of the Fisher ratio were

selected.

For a comparison of the different feature types LDA

classi®ers were developed for all three feature sets.

ANN classi®ers were only developed for adjusted

expert-based features because of the high computa-

tional effort necessary.

Table 3 (Continued )

F Type Interval

±CH=CH±

0.041 INT 3027±3021

0.023 INT 3051±3048

0.023 INT 3043±3042

0.089 INT 1697±1645

0.270 INT 985±962

0.072 INT 746±734

0.054 L12 3158±3017

0.085 L12 1700±1604

0.072 L12 997±959

0.055 L12 815±754

Vinyl

0.071 INT 3089±3071

0.057 INT 3023±3008

0.121 INT 1655±1631

0.574 INT 1004±981

0.293 INT 952±906

0.037 L12 3089±3008

0.220 L12 1661±1600

0.219 L12 1036±989

0.098 L12 1000±879

Carboxylic acid

0.108 INT 3405±2992

0.310 INT 3100±2990

0.890 INT 2667±2513

0.913 INT 1733±1676

0.188 INT 1320±1248

0.183 INT 1436±1401

0.062 INT 953±887

1.001 L12 2741±2503

Aldehyde

0.376 INT 2733±2699

0.934 INT 1732±1661

0.626 L12 2892±2689

0.099 L12 1696±1620

Primary alcohol

0.824 INT 3578±3278

0.587 INT 1079±1003

Secondary alcohol

0.828 INT 3629±3210

0.426 INT 1096±1028

0.222 INT 1032±981

0.198 L12 1092±1014

0.103 L12 1219±1109

Tertiary alcohol

0.875 INT 3650±3201

0.079 INT 1416±1406

0.211 INT 1385±1374

Table 3 (Continued )

F Type Interval

0.084 INT 1169±1124

0.060 INT 1087±1084

0.056 INT 1052±1045

0.054 L12 1142±1113

0.117 L12 1061±1019

0.068 L12 1022±980

Phenol

0.347 INT 3603±3205

0.492 INT 1318±1200

0.468 INT 1264±1130

0.086 L12 1448±1207

0.072 L12 1273±1072

Primary amine/amide

0.768 INT 3502±3326

0.322 INT 1666±1611

1.088 L12 3509±3272

Secondary amine/amide

0.242 INT 3332±3263

0.238 INT 1674±1584

0.387 INT 1587±1531

0.087 INT 1327±1291

0.069 L12 1253±1219

0.116 L12 788±753

0.105 L12 726±697

F: signed Fisher ratio (Eq. (3)); the feature type is defined in

Eqs. (1) and (2); wavelength intervals are given in cmÿ1.
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Table 4

Characteristics of classifiers for the recognition of 20 substructures using different types of features and classification methods

Substructure Classification type nF/nH R1 R2 A50

Methyl LDA/interval 20 25.6a 31.2 83.1

LDA/expert 6 45.2a 7.6 66.3

LDA/adjusted 6 56.4a 34.0 85.7

ANN/adjusted 6/16 68.4a 41.2 86.6

Methylene LDA/interval 20 3.6 44.0 86.6

LDA/expert 6 43.2 52.8 89.9

LDA/adjusted 6 63.6 39.6 88.2

ANN/adjusted 6/5 64.8 49.6 89.4

Benzene LDA/interval 20 52.8 46.8 89.4

LDA/expert 7 64.8 14.0 81.7

LDA/adjusted 10 73.6 42.8 88.5

ANN/adjusted 10/6 70.8 50.0 89.9

Ortho substituted benzene LDA/interval 20 41.2 16.4 80.7

LDA/expert 7 35.6 4.4 80.1

LDA/adjusted 8 51.6 8.8 80.8

ANN/adjusted 8/6 53.6 37.2 83.3

Meta substituted benzene LDA/interval 20 46.0 55.2a 80.5

LDA/expert 13 27.6 5.2a 71.8

LDA/adjusted 11 36.0 3.2a 72.3

ANN/adjusted 11/4 55.6 64.0 79.6

Para substituted benzene LDA/interval 20 47.2 49.6 89.4

LDA/expert 7 42.4 28.0 82.8

LDA/adjusted 8 61.2 55.6 91.2

ANN/adjusted 8/6 65.6 40.8 86.8

Mono substituted benzene LDA/interval 20 79.2 71.6 94.6

LDA/expert 11 69.6 77.6 96.9

LDA/adjusted 11 86.0 86.8 99.2

ANN/adjusted 11/6 92.8 92.4 97.8

Isopropyl LDA/interval 20 18.0 57.2a 80.7

LDA/expert 8 51.2 59.6a 85.7

LDA/adjusted 8 62.8 77.2a 86.2

ANN/adjusted 8/4 60.4 80.4a 88.7

Tertiary butyl LDA/interval 20 42.4 40.8 87.5

LDA/expert 8 56.0 19.2 80.7

LDA/adjusted 10 76.8 66.0 93.8

ANN/adjusted 10/6 78.8 75.2 97.2

Methoxy LDA/interval 20 4.0 37.6 85.5

LDA/expert 8 13.6 <2.8 78.1

LDA/adjusted 11 28.8 40.8 87.7

ANN/adjusted 11/4 28.8 57.6 93.3

Cis- or trans- substituted LDA/interval 20 8.0b 4.4 66.5

carbon-carbon double bond LDA/expert 8 -c 5.2 67.5

LDA/adjusted 10 39.6b 9.2 67.2

ANN/adjusted 10/4 7.6b 20.8 62.5
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Table 4 (Continued )

Substructure Classification type nF/nH R1 R2 A50

Vinyl LDA/interval 20 28.1 14.9 83.6

LDA/expert 10 21.3 14.9 80.7

LDA/adjusted 9 34.5 26.8 76.7

ANN/adjusted 9/2 55.8 43.0 87.3

Carboxylic acid LDA/interval 20 18.4 71.6 93.7

LDA/expert 6 29.2 10.8 74.8

LDA/adjusted 8 64.0 77.2 97.7

ANN/adjusted 8/2 68.0 85.2 >98.5

Aldehyde LDA/interval 20 52.5a 68.8a 92.3

LDA/expert 6 62.1a 55.5a 84.1

LDA/adjusted 4 72.5a 76.3a 91.1

ANN/adjusted 4/4 79.2a 78.8a 94.5

Primary alcohol LDA/interval 20 62.8 54.4 93.2

LDA/expert 4 12.1 37.7 77.7

LDA/adjusted 2 61.9 56.3 92.3

ANN/adjusted 2/2 82.3 84.2 97.6

Secondary alcohol LDA/interval 20 48.5 40.9 86.8

LDA/expert 4 4.3 32.8 86.2

LDA/adjusted 5 22.1 48.1 89.1

ANN/adjusted 5/20 73.2 60.0 92.3

Tertiary alcohol LDA/interval 20 27.1 24.3 82.3

LDA/expert 4 73.8 25.2 73.8

LDA/adjusted 9 71.1 24.3 85.6

ANN/adjusted 9/2 73.8 31.7 85.6

Phenol LDA/interval 20 14.1 10.2 71.7

LDA/expert 4 29.3 25.3 74.4

LDA/adjusted 5 37.8 24.0 73.9

ANN/adjusted 5/2 44.9 24.0 76.3

Primary amine/amide LDA/interval 20 23.6 34.0 86.4

LDA/expert 6 30.8 38.0 87.0

LDA/adjusted 3 36.8 55.6 94.0

ANN/adjusted 3/6 38.4 68.8 95.4

Secondary amine/amide LDA/interval 20 4.6 20.8 78.1

LDA/expert 6 <2.4 <1.6 69.0

LDA/adjusted 7 18.0 <4.4 78.8

ANN/adjusted 7/20 2.0 30.8 81.2

LDA, linear discriminant analysis; ANN, artificial neural network; interval, fixed-interval features; expert, expert-based features; adjusted,

adjusted expert-based features; nF, number of features; nH, number of hidden neurons; R1, R2, recall at 90% precision for class 1 and 2,

respectively; A50, precision for class 2 at a recall of 50%.
a Recall at precision 80%.
b Recall at precision 70%.
c Could not be determined at precision 70% or above.
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4.2. Feature reliability

The majority of the ®xed-interval features have

negative Fisher ratios F. For example, in the classi®-

cation of methyl groups only 68 out of the 256 ®xed-

interval features have positive values for F. A negative

Fisher ratio means that class 1 compounds (substruc-

ture absent) have on the average larger peaks in the

interval than class 2 compounds (substructure pre-

sent). Use of such a feature obviously contradicts basic

principles of IR spectroscopy.

One reason for large negative Fisher ratios is an

unbalanced distribution of an accompanying substruc-

ture in the two classes. The learning set for a methyl

classi®er is used as an example to demonstrate this

effect. In class 1 (consisting of 250 randomly selected

compounds without a methyl group) 189 structures

contain a benzene ring; in class 2 (consisting of 250

randomly selected compounds with a methyl group)

only 146 contain a benzene ring. The numbers of

ortho-, meta-, para-, and mono-substituted benzene

rings in class 1 are 40, 14, 50, and 55; in class 2 they

are 26, 8, 43 and 30. It is therefore not surprising that

an automatic feature selection will also result in

features that are responsible for the benzene substruc-

ture but not for the methyl group. Actually the 14

®xed-interval features with the largest negative Fisher

ratios (from the 20 features used for classi®cation) are

from the intervals 3155±3136 (14), 3117±3099 (11),

3099±3080 (13), 3080±3062 (7), 3062±3043 (18),

1547±1534 (20), 1508±1495 (6), 890±880 (12),

841±831 (15), 756±747 (8), 693±685 (4), 685±676

(17), 659±650 (19), and 537±529 (16); the number in

brackets is the rank when all 256 features are ordered

by their decreasing absolute value of the Fisher ratio.

Only the interval 1547±1534 cmÿ1 (rank 20) is not

characteristic for a benzene ring. A methyl classi®er

based on this simple method of feature selection

therefore would contain many features irrelevant to

the methyl group.

To reduce such spectra-structure miscorrelations

the sign of the Fisher ratio has been considered in

this work for feature selection. Other strategies restrict

the selected features to those with positive loadings (in

LDA classi®ers) or positive coef®cients (in ANN

classi®ers) [6].

The problem of miscorrelations is even more severe

if compounds from class 2 contain an additional

substructure more often than compounds from class

1. In this case neither the use of the signed Fisher ratio

nor the restriction to positive LDA loadings can avoid

the selection of irrelevant features.

The strategy to reduce the chance of miscorrela-

tions, which has been applied in this work, utilizes

spectroscopic knowledge to de®ne wavelength inter-

vals that are characteristic for the classi®ed substruc-

ture, followed by an automatic optimization

procedure. Results demonstrate that a proper adjust-

ment of the expert-based interval limits improves the

performance of the classi®er signi®cantly. Because of

the immense variety of chemical structures structu-

rally well balanced learning and test sets are very

dif®cult to obtain and therefore miscorrelations never

can be excluded completely. Considering additional

spectroscopic expertise helps in some cases: for

instance substructures with a benzene ring usually

give rise to only one peak per characteristic interval;

therefore features of type L12 (Eq. (2)) are not rele-

vant and can be excluded. Applying these methods

resulted in adjusted expert-based features with Fisher

ratios being all positive and being signi®cantly higher

than those for other feature types. The LDA loadings

calculated from these features were mostly positive.

4.3. Classification efficiency

The obtained binary classi®ers have been evaluated

by the recalls R1 and R2 for class 1 and class 2,

respectively, at a precision of 90%. Results for all

20 substructures are summarized in Table 4. When it

was impossible to determine the recall at 90% preci-

sion ± because this value was not reached ± the recalls

are given for a precision of 80% or even for only 70%.

To allow a comparison with other works also the

measure A50 for the predictive ability [6,8] is given;

this criterion is equivalent to the precision for class 2 at

a recall of 50%.

Most of the investigated substructures have accep-

table high values for the recall and also the criterion

A50; this demonstrates the capabilities of the applied

methods for substructure recognition from IR spectra.

Exceptions are the classi®ers for cis- or trans-substi-

tuted carbon±carbon double bonds and for secondary

amines or amides, which exhibit only a poor classi-

®cation ability. Corresponding to experiences from IR

spectroscopy the classi®cation of compounds from
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class 1 (substructure absent) was found to be in

general more accurate than those from class 2; excep-

tions are the substructures methyl, methoxy, mono-

substituted benzene ring, carboxylic acids and primary

amines.

Klawun and Wilkins [18] presented a comprehen-

sive comparison of results from IR substructure clas-

si®cation. The 12 substance classes common in [18]

and in our work show similar trends in the prediction

rates. For instance the success of classi®cation

increases from tertiary to secondary and to primary

alcohols, and from secondary to primary amines (or

amides); carbon±carbon double bonds and aldehydes

seem to be dif®cult to recognize, while benzene rings,

carboxylic acids, and primary alcohols are easier to

identify.

For an objective comparison of the three different

feature sets (and the two applied classi®cation meth-

ods) the paired t-test has been applied. Each set of

classi®ers has been compared with the three others by

using the differences of R1,R2 and A50 for all 20

substructures. The tabulated t-value for 19 degrees

of freedom and 90% statistical signi®cance is 1.73 for

a two-sided test. Table 5 summarizes the results of this

comparison. A t-value greater than 1.73 indicates that

the method given in the row is signi®cant better than

the method given in the column; if t is smaller than

ÿ1.73 the method in the column is signi®cant better

than that in the row.

For spectra from class 2 (substructure present)

conclusions can be drawn from Table 5 as follows:

The criteria R2 and A50 give nearly the same results in

the comparison of the feature sets; this is reasonable

because both criteria estimate the classi®er perfor-

mance for class 2 spectra. For LDA classi®ers adjusted

expert-based features gave similar results as ®xed-

interval features but both are signi®cantly better

than the original expert-based features. At a ®rst

glance it is surprising that expert-based features are

less powerful than ®xed-interval features. An expla-

nation for this result is that for ®xed-interval features

the most discriminating intervals (without regard to

spectroscopic relevance) have been selected. On the

other hand the original expert-based features use wide

intervals to include spectral bands of the substructure

in various structural environments; thus, into these

intervals also fall bands of compounds which do not

belong to class 2. The adjustment of the original

expert-based intervals by the optimization method

described enhanced the classi®cation performance

signi®cantly.

For spectra from class 1 (substructure absent) con-

clusions can be drawn as follows: for LDA classi®ers

the adjusted expert-based features gave much better

results than the original expert-based features which

are almost equivalent to the ®xed-interval features. For

the classi®cation of class 1 spectra even the wide

original expert-based intervals are successful: if a

spectrum has no peaks in the wide interval then the

presence of the substructure is very improbable. How-

ever, also for class 1 the adjustment of the original

expert-based intervals enhanced the classi®cation per-

formance considerably.

4.4. Comparison of ANN with LDA

The paired t-test has also been used to compare the

performance of ANN and LDA classi®ers. Because of

the high computational effort necessary to train ANNs

only the set of adjusted expert-based features has been

used for ANN classi®ers. The t-values in Table 5 show

that classi®cation of class 2 is in general signi®cantly

better with ANN than with LDA classi®ers. For class 1

the differences are not signi®cant although for 16

substructures the ANN classi®ers exhibit higher recall

values R1 than the LDA classi®ers (Table 4). The only

substructures for which ANN could not improve the

Table 5

Signed t-values (statistical t-test) from comparisons of LDA and

ANN classifiers using different types of features

LDA/interval LDA/expert LDA/adjusted

Comparison of recall R1 (class 1, substructure absent)

LDA/expert 0.62

LDA/adjusted 4.44 6.29

ANN/adjusted 6.91 5.27 1.53

Comparison of recall R2 (class 2, substructure present)

LDA/expert ÿ3.10

LDA/adjusted 0.85 4.04

ANN/adjusted 6.55 6.54 3.85

Comparison of criterion A50

LDA/expert ÿ3.35

LDA/adjusted 1.58 4.02

ANN/adjusted 4.48 5.16 2.78
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(very poor) performance of LDA classi®ers are cis- or

trans-substituted carbon±carbon double bonds and

secondary amines or amides.

The better performance of ANN classi®ers is gra-

phically demonstrated by an example in which only

two features are used. For the recognition of primary

alcohols the intervals 3578±3278 cmÿ1 and 1079±

1003 cmÿ1 have been found to be optimal for the

adjusted expert-based features of type INT, (Eq. (1)).

In a LDA classi®er the discriminant variable zLDA is a

linear function of INT(3578, 3278) and INT(1079,

1003), and was found as given by Eq. (8).

zLDA � 0:8287 I1 � 0:5598 I2; (8)

where I1 and I2 are the features autoscaled by the

means and standard deviations from the learning set

data, Eqs. (9a) and (9b).

I1 � �INT�3578; 3278� ÿ 0:3214�=0:306; (9a)

I2 � �INT�1079; 1003� ÿ 0:4463�=0:286: (9b)

For the ANN classi®er the discriminant variable

zANN is calculated from the same features by using the

non-linear algorithm implemented in the network,

Eq. (10)

zANN � f �4:672 f �16:50 I1 ÿ 0:9246 I2 � 9:864�
ÿ 3:498 f �3:455 I1 ÿ 8:991 I2 ÿ 6:947�
ÿ 2:416� (10)

with f(.) being the squashing function from Eq. (4)

with �j�1 and �j�0.

Fig. 4 contains the 90% precision borders for

assigning spectra to class 1 or class 2; the axes of

the co-ordinate system correspond to the absorbance

values of the highest peaks in the two intervals. Each

point corresponds to one or more spectra from the test

set (triangles denote primary alcohols, circles denote

other compounds). The straight lines describe the

classi®cation thresholds for the LDA classi®er, while

the curved lines are for the ANN classi®er. If a

spectrum is located in the area between the two classes

then the precision of the answer is below 90% and the

classi®cation is rejected. For example a spectrum that

gives the value 0.4 for both features would be assigned

by the ANN classi®er to class 2 (primary alcohol) but

would not result in an answer when the LDA classi®er

is applied. The non-linear ANN classi®er is able to

separate the two classes better ± although not excellent

± than the LDA classi®er and consequently has higher

Fig. 4. Recognition of primary alcohols (test set) by using features INT(3578, 3278) and INT(1079, 1003) for adjusted expert-based intervals.

The feature space has been separated by the training into areas for class 1, class 2 and rejection of classification (90% precision). Straight lines,

LDA; curved lines, ANN; triangles, primary alcohols (class 2); circles, other compounds (class 1).
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recall values (82% instead of 62% for R1, and 84%

instead of 56% for R2).

5. Conclusions

The introduced adjusted expert-based features for

IR spectra are based on reliable concepts from spectro-

scopy combined with mathematical optimization.

Results obtained for 20 substructures show that this

feature type leads to signi®cantly better classi®ers

than obtained from ®xed-interval features or features

calculated from the original expert-based wavelength

intervals. Introducing human expertise to the learning

process and thereby also setting some limits had a

positive effect on the performance of the classi®ers.

The signed Fisher ratio was successfully used for

feature selection and reduced spectroscopic miscorre-

lations.

ANN classi®ers were found to be in general better

than LDA classi®ers; for recall values of class 2

(substructure present) the improvement is highly sig-

ni®cant. This result is of bene®t because spectrosco-

pists are primarily interested on the substructures

present in an unknown. Also in systematic structure

elucidation ± which creates all isomers for a given

molecular formula that ful®l de®ned structural restric-

tions ± positive restrictions are most powerful

[29,33,34]. The developed IR classi®ers were imple-

mented into the new software IRIS for easy use in

practical laboratory situations; thus IR spectra classi-

®cation serves as a complementary tool to IR library

search. Tests have shown that IR classi®ers provide

additional structural information to that obtained from

MS classi®ers [34]. The independent application of

MS and IR classi®ers for establishing structural

restrictions often reduces appreciably the number of

generated isomeric molecular structures in compari-

son to the use of only one type of classi®ers [35].
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