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Information about the unknown chemical structure of an organic compound can be obtained by comparing
the infrared spectrum with the spectra of a spectral library. The resulting hitlist contains compounds exhibiting
the most similar spectra. A method based on the maximum common substructure concept has been developed
for an automatic extraction of common structural features from the hitlist structures. A set of substructures
is derived that are characteristic for the query structure. Results can be used as structural restrictions in
isomer generation.

INTRODUCTION

The development of automated systems for structure
elucidation and identification of organic compounds- based
on computer-assisted interpretation of spectra- continues
to attract the attention of spectroscopists and chemometri-
cians. Besides NMR spectroscopic techniques and mass
spectrometry the use of infrared (IR) spectral data plays an
important role in structure elucidation.1,2 Computer-based
approaches for the interpretation of IR spectra can be
classified into three categories: (1) knowledge-based systems
in which chemical expertise is encoded to assist in spectra
interpretation3-5; (2) pattern recognition methods based on
multivariate data analysis, statistics, and neural networks6-9;
and (3) the most widely used technique, namely search in
spectral libraries. Each of these approaches has its own
advantages and limitations, but especially library search
methods have demonstrated their usefulness in scientific and
laboratory practice.3,10 Recently, a new approach for inves-
tigating the relationships between three-dimensional (3D)
molecular structures and IR spectra has been described.11

The primary result of a spectral library search is a hitlist
containing a set of- typically ten to hundred- reference
spectra (thehits) that are most similar to the spectrum of
the unknown. If the unknown is a member of the library,
then the correct answer often appears as the first hit that
exhibits a significant larger similarity to the spectrum of the
unknown than the others. In such cases, a more or less
unambiguous identification of the unknown is possible.
However, if the unknown compound is not contained in the
spectral library, a more sophisticated interpretation of the
hitlist is necessary, assuming that similar spectra indicate
similar structures.10

Several approaches have been suggested for a computer-
assisted evaluation of spectral hitlists with the aim to extract
structural information about the unknown. These approaches
can be roughly divided into three groups:

(1) The structures of the hitlist are characterized by a set
of molecular descriptors that describe selected features of
chemical structures. A statistical evaluation of these data
may indicates those structural features that have a high
probability to be present or to be absent in the structure of
the unknown. This method has been implemented with a
pre-defined set of descriptors in the mass spectrometric
library search systems STIRS,12 MassLib,13,14 and NIST.15

In the multispectral database system SpecInfo,16 a set of
atom-centered fragments is derived from the hitlist structures
and statistically evaluated to obtain structural information
about the unknown.17

(2) Spectra and structures of a hitlist are represented by
two corresponding matrices,X (containing spectral features)
andY (containing molecular descriptors). The relationships
between the two matrices can be investigated by multivariate
chemometric methods. Promising applications of principal
component analysis and partial least squares mapping have
been demonstrated for mass spectra18 and IR spectra.19

(3) The concept of maximum common substructures
(MCS) among the hitlist structures has found only little
interest up to now for the interpretation of hitlists. An early
work reports an application in mass spectrometry.20 More
extensive use of the MCS approach has been described
together with a cluster analysis of mass spectra.21,22 Fur-
thermore, hitlists obtained by a spectral similarity search with
13C NMR spectra have been analyzed by a MCS algorithm
that also included the prediction of13C NMR signals23; it
was demonstrated that the obtained MCSs often explain main
structural features of the tested unknowns. A similar
approach is used in the present paper. Recently, a simplified
MCS concept has been applied to results obtained by a new
type of library search for IR spectra.24

The aim of this work was to investigate whether a MCS
approach can be successfully applied to hitlists obtained from
library searches with IR spectra. The final purpose was to
generate structural restrictions for a systematic structure
elucidation applicable to compounds that are not contained
in the library. A large spectral and structural library
containing>13 000 entries served as the database. Auto-
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matic and exhaustive isomer generation by using the mo-
lecular formula and the structural restrictions were used for
an objective evaluation of the method (Figure 1).

SPECTRAL LIBRARIES AND SOFTWARE

Hardware. All computations were performed on Pentium
personal computers, 166 MHz, running under MS-Windows
3.11.
SpecInfo IR Library. SpecInfo16 is a multispectral

database system, running on workstations. The IR database
of this system contains 13 484 full-curve spectra together
with chemical structures and was available for this work in
JCAMP-DX format. The original spectral range is 400 to
4000 cm-1, with a sampling interval of 1.93 cm-1, corre-
sponding to 1867 data points; the absorbance values are
normalized to the range 0-999. Table 1 shows the distribu-
tions of molecular weights and of some compound classes
in this database. The ranges of the most common elements

are C0-50H0-78N0-10O0-13Br0-4 Cl0-7 F0-32P0-3 S0-5 Si0-13.
The IR spectra, structural data, molecular formulas, and
compound names were converted for use in the software
products IRSS (for spectral library searches) and ToSiM (for
substructure searches). IRSS uses the spectral range from
500 to 3700 cm-1, with a sampling interval of 4 cm-1,
corresponding to 801 data points; the original spectral data
were converted by a smoothing procedure based on weights
from a normal distribution. The absorbances were trans-
formed to absorbance units (AU) and scaled to the range
0-1 with a resolution of 8 bit.
IRSS. The IRSS program is for searching in libraries of

IR spectra,25,26 and is run under MS-Windows. Seven
different algorithms for the comparison of IR spectra are
implemented: three methods for matching peaks, and four
methods for comparing full spectral curves (as described in
theMethodssection). Furthermore, IRSS contains software
tools for the import of IR spectra in JCAMP-DX format,
for peak picking, and for an interactive analysis of IR spectra
from mixtures based on multiple linear regression. Software
IRSS is available from the authors.
ToSiM. The ToSiM program is run under MS-DOS and

contains tools for the investigation of topological similarities
in molecules, such as cluster analysis of chemical structures,
determination of large and maximum common substructures
(described in theMethodssection), and determination of
equivalent atoms and bonds in a molecule.27 Import and
export of structures via Molfile format is implemented.
Software ToSiM is available from the authors.
MOLGEN. Version 3.1 of this software28was used under

MS-Windows. MOLGEN computes complete sets of
connectivity isomers for given brutto formulas. The con-
struction of isomers is redundancy free, complete, and fast;
it can be restricted by a goodlist and a badlist. The goodlist
may contain overlapping substructures but also so-called
macro atoms(nonoverlapping substructures possessing a
maximum of 12 free valences). Furthermore, limits for ring
size, valences, and the number of hydrogen atoms at C, N,
and O atoms can be defined.

METHOD

Similarity of IR Spectra. Existing software3 uses a
number of different measures for the similarity of two IR
spectra. Our own experience and results reported in several
papers indicate that IR spectra that are reduced to peaks yield
less reliable results than full-curve spectra. In this work,
for all searches, full spectra (containing 801 absorbance
values between 500 and 3700 cm-1, with a constant sampling
interval of 4 cm-1) were used and sequential searches through
the entire library were always performed.

Figure 1. Scheme of the application of a maximum common
substructure approach to evaluate hitlists from library search with
the aim to obtain structural information. Single-line boxes denote
data, others denote software or human interaction.

Table 1. Number of Compounds Per Molecular Weight Interval in
the SpecInfo IR Database16

molecular
weight interval all

no
ring

any
ring

benzene
ring alicyclic

only
CHNO

18-100 396 286 110 6 94 331
101-200 5016 1235 3781 2195 1847 3401
201-300 4576 354 4222 3330 2238 2285
301-400 2520 75 2445 2083 1791 993
401-500 827 6 821 756 577 160
501-962 149 2 147 129 77 36
sum 13484 1958 11526 8499 6524 7206
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Four different measures (hit quality indices,HQI1 toHQI4)
were applied to describe the similarity of IR spectra. All
four hit quality indices range between 0 and 999 (the last
value is obtained for identical spectra). LetN be the number
of absorbance values in a spectrum (in this applicationN is
equal to 801);AkU andAkR are the absorbances of the interval
k in the spectrum of the unknown and in that of the reference
(library) spectrum, respectively. All absorbance values are
between 0 and 1.
Hit quality indexHQI1 is based on the sum of the squared

absorbance differences,S1:

Hit quality indexHQI2 is calculated from the sum of the
absolute absorbance differences,S2:

Hit quality indexHQI3 is a normalized scalar product of
two spectral vectorsAU andAR, as shown in eq 3:

Hit quality index HQI4 is based on the correlation
coefficient, withAmU andAmR being the averaged absorbances
in the spectrum of the unknown and the reference, respec-
tively:

Maximum Common Substructures (MCS). The MCS
of two chemical structures is the largest possible substructure
that is present in two given structures. The software used,
ToSiM,22 contains a tool for the determination of the MCS
of two structures that are input by two-dimensional con-
nectivity tables; the type of the MCS can be defined by some
parameters. In this application, two substructures are
considered to be identical (isomorphic) if all atoms (elements)
and all bonds (single, double, triple, aromatic) can be
matched. Optionally, a further restriction can be applied
concerning the number of hydrogen atoms: two nonhydrogen
atoms are considered to be identical only if the number of
hydrogens bonded to them is equal.
The size of a substructure is defined by the number of

nonhydrogen atoms. Only connected substructures are
considered as a MCS; furthermore, a minimum number of
nonhydrogen atoms in a MCS can be defined (with a default
value of four). In the case where more than one MCS is
possible, ToSiM only finds one of them. The algorithm
applied in ToSiM is based on the generation of trees starting
at selected atoms in each molecule.22

The MCS is a measure and a description of the similarity
of two structures. The MCS of a set ofn structures, however,
may be very small or may even not exist if an exotic structure
is accidentally contained in the set. Furthermore, searches
for the MCS of many structures are computationally very
demanding. Therefore, the common structural properties of
a set of structures are described by a set of characteristic
substructures, each of them being the MCS of a pair of
structures.21-23 Such a set of characteristic substructures is
obtained as follows: In the first step for each of then(n -
1)/2 pairs of structures, the MCS is determined. In the
second step for each MCSi found in step 1, the number of
occurrences,ni (frequency), in then structures is counted
by applying substructure searches. In the third step, the
MCSs are ordered by their decreasing ranking weight,Ri,
as defined in eq 5. This ranking considers both the frequency
and the size of the substructures; the different influences are
determined by a user-adjustable factorf (ranging between 0
and 1):

whereAi is the number of nonhydrogen atoms in MCSi and
Amax is the maximum number of nonhydrogen atoms in all
n investigated structures. If factorf is zero, only the
frequency counts for the ranking; iff is 1, only the size is
considered; tests have shown that most informative results
are usually obtained for values between 0 and 0.3. A set of
substructures possessing the highest ranking weights can be
automatically determined by the software ToSiM.
Generally, this approach cannot find the MCS of alln

structures. However, in the case where the MCS from one
pair of structures occurs in alln structures, no larger
substructure common to alln structures can exist. The
obtained set of characteristic, large, and frequently occurring
substructures characterizes common and typical structural
properties in the investigated set of compounds; the result
is only less affected by outlier structures.
Evaluation of Library Search Hitlists by MCS. Hitlists

from spectral similarity searches- each containing 50 hits
- have been evaluated by the MCS approach just described.
If the tested “unknown” is contained in the library, it appears
as the first hit and has been removed from the hitlist; also
structural duplicates in the hitlist have been removed. Tests
showed that a reasonable size of the hitlist for an evaluation
by the described MCS method is∼50 entries.
In addition to the application of single spectral similarity

measures (i.e.,HQI1 to HQI4) a combination of all four
criteria has also been tested as follows: First, each similarity
measure is used individually to generate a hitlist; then, a
combined hitlistis determined as the intersection of the four
hitlists and therefore only contains hits that are present in
all four individual hitlists.
Figure 1 summarizes how the described MCS approach

has been applied to determine typical common structural
properties in hitlists. The set of characteristic substructures
used usually contained 18 substructures ordered by their
decreasing number of occurrences in the hitlist structures.
Optionally, this list of substructures can be compressed by
deleting those substructures that are contained in others. A
number of tests showed that many (often all) of the obtained
characteristic substructures are contained in the molecular

HQI1 ) 999(1- S1) with S1 )x∑
k

(Ak
U - Ak
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structure of the unknown. Frequently, the characteristic
substructures cover almost the entire molecule. In some
cases, however, substructures are found that are not part of
the unknown; these errors can be detected if additional
information about the unknown is available (for instance a
molecular weight range, the molecular formula, or presence/
absence of substructures as obtained from spectral classifiers).
The occurrence of false positives is not considered to be a
severe problem in practice because structure elucidation
always should apply different complementary techniques that
allow cross checks of the results.
In addition to the relevance of an MCS for structure

elucidation, the statistical significance of the number of
occurrences in the hitlist also has to be taken into account.
Let p be the probability of a substructure in the library. If
the hitlist (sizen) would be a random sample of the library
(zero hypothesis), the probabilitiesp(k) for havingk com-
pounds containing this substructure in a hitlist are given by
the binomial distribution shown in eq 6:

For an actual numberni of occurrences of substructure
MCSi in a hitlist, a statistical riskR can be calculated by eq
7;R is the probability that a randomly selected hitlist contains
ni or more entries with substructure MCSi. In other words,

R is the probability for rejecting the zero hypothesis although
it is true:

Table 2 contains the values ofR for probabilitiesp )
0.1, 0.2, ... 0.9, and numbers of occurrenceni ) 5, 10, ...
45 in hitlists of size 50. For example, if the probability of
a substructure in the library is 0.3, the probability that a hitlist
of size 50 accidentally contains 25 or more compounds
possessing this substructure is 0.0024. Typical results for
MCSs in hitlists that were obtained by IR spectra library
searches had values ofR of <0.001, which demonstrates a
high statistical significance.

RESULTS

The main features, some applications, and limits of the
described MCS approach for systematic structure elucidation
are demonstrated and discussed next by three examples.
Example C4H6O2. Figure 2 shows the first 10 hits

obtained by a library search with the IR spectrum of
butyrolactone as the unknown and using the hit quality index
HQI4 (based on the correlation coefficient). The butyrolacton
ring can be easily identified as a characteristic substructure
directly from the hitlist structures; it is contained in nine of
the first 10 hits (if considering hybridization in eight hits).

Table 2. Evaluation of the Statistical Significance for the Number of Occurrences of a Substructurei In a Hitlist of Sizen ) 50a

R

p (probability of the substructure in the library)

ni pi 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5 0.1 0.5688 0.9815 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.2 0.0245 0.5563 0.9598 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000
15 0.3 0.0001 0.0607 0.5532 0.9460 0.9987 1.0000 1.0000 1.0000 1.0000
20 0.4 0.0000 0.0009 0.0848 0.5535 0.9405 0.9986 1.0000 1.0000 1.0000
25 0.5 0.0000 0.0000 0.0024 0.0978 0.5561 0.9427 0.9991 1.0000 1.0000
30 0.6 0.0000 0.0000 0.0000 0.0034 0.1013 0.5610 0.9522 0.9997 1.0000
35 0.7 0.0000 0.0000 0.0000 0.0000 0.0033 0.0955 0.5692 0.9692 1.0000
40 0.8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0022 0.0789 0.5836 0.9906
45 0.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0480 0.6161

a The statistical riskR is the probability that a randomly selected hitlist containsni or more entries with substructurei in the molecule;R is the
probability for rejecting the zero hypothesis although it is true;p is the probability of substructurei in the library;pi is the probability of substructure
i in the hitlist (pi ) ni/n); R is rounded to four digits.

Figure 2. Hitlist obtained by a library search with the IR spectrum (3700 to 500 cm-1) of butyrolactone as the unknown. The first 10 hits
together with their value for hit quality indexHQI4 are shown.

p(k) ) [n!/(k!(n- k)!] pk (1- p)n-k (6)

R ) ∑p(k) with k) ni ...n (7)
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The structural information contained in a hitlist depends
on the number of considered hitlist structures. This influence
is demonstrated by a comparison of the results obtained from
the first 20 hits and those obtained from all 50 hits.
The five most frequent characteristic substructures obtained

from the first 20 hits are shown in Figure 3. The butyro-
lacton ring has been found as a characteristic substructure
occurring in 19 hitlist structures. The substructure C-C-
O-CdO is contained in all first 20 hitlist structures and
therefore is a MCS of all investigated structures. Three other
substructures that have been found are wrong because they
are not part of the unknown.
For a comparison, the most frequent characteristic sub-

structures obtained from all 50 hits are shown in Figure 4.
The first nine substructures are all contained in the molecular
structure of the unknown; in total, 10 are correct and five
are wrong. If the molecular formula of the unknown is
considered to be known, then four of the five wrong
substructures are not relevant anymore because they contain
too many carbon atoms. This example is representative for
the general trend indicating that hitlists with∼50 compounds
yield optimum results with the spectral library used.
The five most frequent characteristic substructures from

Figure 4 have been used as structural restrictions for
automatic isomer generation. The total number of isomers
of C4H6O2 is 263; if only the first substructure is requested
to be present, the number of possible molecular structures
is reduced to nine; if all five substructures are requested to
be present, only one isomer (the correct butyrolacton)
survives (Table 3).
Example C14H11NO2. The IR spectrum of benzamide,

N-(4-formylphenyl), shown in Figure 5a, has been searched
in the spectral library by applying all four hit quality indices
HQI1 toHQI4 separately. From each hitlist (each containing
50 compounds), 18 characteristic substructures have been
derived; all except two are part of the query structure.

Removing all substructures that are contained in others
resulted in four compressed sets of characteristic substruc-
tures, as displayed in Figure 6. The most informative results
have been obtained by applying hit quality indexHQI4 which
is based on the correlation coefficient: all five substructures
are correct and their frequencies in the hitlist structures have
the highest values. Application of the normalized scalar

Figure 3. Five most frequent characteristic substructures obtained from the first 20 hits; library search was done with the IR spectrum of
butyrolactone using hit quality indexHQI4. For each substructure, the number of occurrences in the 20 hitlist structures is given. Key: (Y)
substructure contained in the query structure; (N) substructure not contained in the query structure.

Figure 4. Fifteen most frequent characteristic substructures obtained from all 50 hits; library search was done with the IR spectrum of
butyrolactone using hit quality indexHQI4. For each substructure, the number of occurrences in the 50 hitlist structures is given. Key: (Y)
substructure contained in the query structure; (N) substructure not contained in the query structure.

Table 3. Use of Characteristic Substructures from Figure 4 as
Goodlist Restrictions In Isomer Generation for the Butyrolacton
(C4H6O2) Example

number of isomersa

substructure
numberj

substructurej
in goodlist

substructures 1 toj
in goodlist

1 9
2 72 7
3 9 4
4 3 3
5 5 1

aWithout any restrictions 263 isomers are possible.

Figure 5. (a) Benzamide,N-(4-formylphenyl), example (C14H11-
NO2). (b) Macro atom with 11 free valences (Q) as obtained from
an evaluation of the IR library search hitlist by the described MCS
approach. Although the macro atom covers most of the query
molecule, 458 isomers are still possible if only valence rules are
applied.
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product (HQI3) was less successful: two from the four
substructures are wrong and their frequencies in the hitlist
structures have the lowest values. Similar results have been
obtained with other examples.

Although the resulting substructures shown in Figure 6
cover almost the entire molecular structure of the unknown,
a direct use of them in the goodlist for isomer generation is
not successful. The very high number29 of isomers for
C14H11NO2 cannot be reduced to a manageable size just by
using one of these substructures as a macro atom and the
others in the goodlist. In this case, an interaction of the
chemist and some assumptions are required for testing and
utilizing the result. From the obtained characteristic sub-
structures it is reasonable (and might be supported by other
data or knowledge about the unknown) that the unknown
molecular structure contains two benzene rings and two
different carbonyl groups. Based on this hypothesis a macro
atom as shown in Figure 5b can be constructed; thereby,
the number of possible molecular structures is reduced to
458. Although this macro atom is almost identical with the
skeleton of the query molecule, a relative large number of
isomers still remains; the principal reason for this result is
the great number of 11 free valences in the macro atom.

Browsing through the 458 candidate structures or applying
a cluster analysis of the structures30,31 indicates that many
of the generated structures contain ring systems that probably
cannot be present in stable chemical compounds. Therefore,
two further assumptions about the structure of the unknown
have been postulated: (a) only six-membered rings were
permitted to avoid a second bond between the two benzene
rings, and (b) bridges between nonneighboring atoms of a
benzene ring were forbidden if consisting only of two atoms.
Considering these restrictions, only seven molecular candi-
date structures survive with the correct structure included.

Example C31H31NO4Cl2. The IR spectrum of a higher
molecular weight compound, namely proline, 1-benzoyl-4-
(2,5-dichlorobenzoyl)3-(1,1-dimethylethyl)-5-phenyl, ethyl
ester; Figure 7, is used to demonstrate the advantage of a
joint use of different spectra similarity criteria. In the first
step, separate library searches have been performed with the
four hit quality indicesHQI1 toHQI4. In a second step, the
intersection of the four hitlists has been built, resulting in a
new hitlist containing 25 reference structures that are
common to all four individual hitlists. In a third step, this
new hitlist was used for the generation of a set of charac-
teristic substructures by the MCS approach. The final fourth
step generated the compressed set resulting in seven sub-
structures (Figure 8a).

For comparison, the characteristic substructures that have
been obtained byHQI4 (based on the correlation coefficient)
are also shown (Figure 8b). All these substructures are
correct because they are part of the investigated structure;
the number of occurrences in the hitlist is statistically
significant for all substructures (R < 10-6). However, the
substructures obtained by a joint use of the four hitlists
provide more structural information than those deduced from
the single hitlist: the former are larger and more unique

Figure 6. Benzamide,N-(4-formylphenyl) example (C14H11NO2); structure given in Figure 5a. Compressed sets of characteristic substructures
obtained from hitlists that have been generated by the use of the four hit quality indicesHQI1 to HQI4, as defined in eqs 1-4. For each
substructure, the number of occurrences in the 50 hitlist structures is given. Key: (Y) substructure contained in the query structure.

Figure 7. Proline, 1-benzoyl-4-(2,5-dichlorobenzoyl)3-(1,1-di-
methylethyl)-5-phenyl, ethyl ester, example (C31H31NO4Cl2).
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(because the probability of occurrence in the complete
spectral library is much smaller).
The substructures found to be characteristic are large

building blocks of the query structure; however, a direct use
of them as structural restrictions in isomer generation is not
reasonable. In this case, a systematic and exhaustive
structure elucidation would only be possible with additional
structural data that allow the definition of large macro atoms
with a small number of free valences.

CONCLUSION

A MCS approach has been described that allows the
determination of a set of substructures from hitlists obtained
by IR spectral similarity searches. These substructures are
often characteristic for the molecular structure of the
unknown. In some cases, they can be directly applied as
structural restrictions for automatic isomer generation. In
general, however, an interaction of the chemist is necessary
to detect inconsistencies or wrong substructures.
The main factors influencing the result are: (1) the

contents and size of the spectral library, (2) the applied
spectral similarity measure, (3) the number of hitlist struc-
tures used for the determination of MCSs, and (4) the
parameters of the MCS procedure. From the presented
examples, some conclusions can be drawn regarding the
influencing factors. The most powerful spectra similarity
criterion tested is that based on the correlation coefficient.
A parallel use of different similarity criteria and the intersec-
tion of the hitlist structures usually improves the result. The
optimum size of hitlists is∼50. The MCSs are preferably
ordered by their frequency of occurrence in the hitlist
structures. A compressed list of characteristic substructures
is often more useful than many small substructures. The
method can only be successful if several structures in the

library are similar to the unknown. If this is not the case a
misuse can often be avoided because the hitlist then contains
very different structures and the resulting “characteristic”
substructures are present in only a few hitlist structures.
The resulting set of characteristic substructures has to be

checked carefully and compared with available knowledge
about the unknown. However, even if some of the sub-
structures are wrong (that means they are not or not
completely contained in the structure of the unknown), the
result provides useful structural information that usually
cannot be obtained directly from a visual inspection of the
hitlist.
The described MCS approach is not limited by predefined

molecular descriptors or compound classes; it is self-adapting
to the type and complexity of the molecular structures
contained in the hitlist.
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