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Abstract. In view of the role of cities for ensuring a favorable living environment,
it  is  important to study the urban soils since they are formed and developed
under the impact of different by degree and type anthropogenic perturbations.
Pedo-chemical studies of urban soils may capture the evolution of different soil
components and reveal the different stages of soil matrix transformation. Using
pedogenic and chemical analyses, the present article aims to present the trends of
perturbations of the mineral and organic matrix of urban soils located along the
direction of increasing gradient of urbanization in cursory investigated soil zones
belonging to the residential and industrial districts of the Sofia city (Bulgaria).
The  results  obtained  show  that  anthropogenic  alterations  are  predominantly
associated  with  morphological  reorganization  of  some  soils  rather  than  soil
compaction and structure loss. The increase of exchangeable hydrogen content
provoked by fulvic acid production and leaching can be attributed to the current
natural  perturbations.  Anthropogenically  induced  chemical  changes  could  be
linked with increase of the mineral N flux and high ammonium content which
will influence the existing acid-base status of Sofian soils. 

Key words: urban soils; exchange capacity; aqua regia; humic acids specification;
nitrogen fluxes.

Introduction 
Globalization  processes  that  started  in

the  beginning  of  the  20th  century
transformed cities in a unique assemblage of
natural,  ethnic,  aesthetic,  production,
commercial,  social  and  tourist  symbols  but
also contributed to the increase of  chemical
vulnerability  of  soils.  The  enormous
gathering  of  population  in  the  cities

influences all the environmental components
and  substantially  changes  the  soil  cover.
Usually,  urban  soils  significantly  differ  in
properties  and  organization  from  natural
soils  and  should  be  properly  managed
(LEHMANN & STAHR,  2007). Specific features
of urban soils are related to the variation of
soil acidity and sorption capacity, enrichment
with  organic  matter  mostly  in  the  form  of
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non-hydrolysed  carbon,  low  water  holding
capacity,  strong  compaction  and  heavy
metals  contamination  (DOICHINOVA,  2006;
DOICHINOVA & ZHYANSKI, 2013). 

Metrics such as pH and cation exchange
capacity  are  the  most  preferable  and
accessible indicators for initial assessment of
chemical  status  of  soils  (THOMAS,  1996;
DINEV,  2011;  NIKOVA,  2009).  It  is  a  well-
known fact that the interpretation of data on
physico-chemical  processes  running  in  the
soil adsorbent is a key tool for the sustainable
management  and  protection  of  soils
(HENGLEIN,  1993).  Organic  matter
accumulation  and  transformation  as  prime
soil-forming processes in the pedosphere are
also widely discussed (SARDANS et al.,  2012;
CHENU et al., 2015; BŁONSKA & LASOTA, 2017;
PIERSON,  2017;  FROUZ & VINDUŠKOVÁ,  2018;
ABDELRAHMAN et  al.,  2018;  FILCHEVA,  2018;
STUMPF et  al.,  2018).  The  issue  of  global
warming  forces  the  studies,  which  increase
the  knowledge  of  domains,  resistance  and
cycling  of  chemical  elements  in  and out  of
ecosystems  (FINZI et  al.,  2011;  DELGADO-
BAQUERIZO et al.,  2013;  TSOLOVA et al.,  2014;
PARTON et al., 2015; YUAN & CHEN, 2015; TAN
& WANG, 2016; JIAO et al., 2016).

The  scarce  data  on  urban  soils  in
Bulgaria has aroused the interest in studying
their  pedochemical  characteristics  as
information  carriers  on  modern  and  relict
processes  of  soil  formation  and
transformation.  By  studying  the  cation
exchange  capacity,  base  saturation  level,
content of main exchangeable cations, content
and  forms  of  essential  nutrients  including
organic carbon, the present article  aimed to
present  the  trends  of  transformation  of
mineral  and  organic  matrix  of  urban  soils
located  along  the  direction  of  increasing
gradient  of  urbanization  in  cursory
investigated  soil  zones  belonging  to  the
residential and industrial districts of the Sofia
city (Bulgaria).

Materials and Methods
Location and morphogenesis of studied soils
Data  on  6  soil  types,  located  at  the

Eastern part of the Sofia city are represented
in  present  publication.  All  soils  form
ecosystems  with  recreational  significance
and some of them have not been previously
studied.  They  are  distinguished  for  the
following morphogenesis: 

Anthropogenically  overlapped
moderately  leached  Smolnitsa,  loamic  is
characterized  by  profile  1  located  in
“Mladost”  residential  region  (Fig.  1).  This
soil was formed as a result of urbanization
and  occupies  previously  unexplored  soil
zone. In fact,  moderately leached Smolnitsa
borders  this  highly  urbanized  zone
according to the previous studies (ACHKOV
et  al.  1972).  The  original  soil,  Smolnitsa
(named  after  organic  clays,  smolnitsas
composing soil)  is  overlapped by layers  of
earth  calcaric  masses,  mixed  with  urban
waste,  pebbles  and  gravel.  Profile
development  and  morphological
organization  of  new  soil  includes
differentiation  of  organic  matter,  which
resulted  in  a  bimodal  distribution  and  3
representative  horizons  for  soil
morphogenesis:  Ahk (0-15  cm)  -  C1k (15-65
cm) - Аb (65-110 cm). 

WRB  classification  of  soil:  Urbic
Technosol  (Eutric,  Loamic,  Humic,
Transportic)  over  Pellic  Vertisol  (Chernic,
Endocalcaric).  Profile  2 characterizes
Technogenic  soil,  moderately  deep,  loamic,
moderately  stony  (15%  coarse  surface
fragments’  content  in  Ah horizon,  Fig.  2),
classified  as  Urbic  Technosol  (Amphyskeletic,
Calcaric,  Mollic,  Transportic).  This  soil  is
formed by massive pilling of earth calcaric
materials  onto  the  moderately  leached
Smolnitsa,  loamic  during  the  “Mladost”
district  construction.  Profile  development
and morphological  organization are  results
of  surface  accumulation  of  organic  matter
and  slow  weathering  of  subsoil  that  is
strongly mixed with urban building artefacts
– these processes lead to the formation of a
three-layered profile: Ahk (0-21 cm) - C1k (21-
52 cm) - C2k (52-85 cm). Parent materials are
Quaternary  brown  alluvial  clays  and
Pliocene  sands,  usually  calcaric  (YANEV et
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al., 1992;  1995;  BOJINOVA-HAAPANEN,  2014).
Profile  3  illustrates  the  morphogenesis  in
moderately  leached  Cinnamon  forest  soil,
loamic,  slightly  to  moderately
eroded  /Chromic  Endocalcic  Luvisol  (Clayic,
Differentic, Humic, Profondic)/ located in the
periphery  of  the  “Mladost”  residential
region  (Fig.  3).  Profile  development  is  a
result  of  pedogenetic  differentiation
(illuviation)  of  clay  content  by  depth  and
leaching  of  base  cations.  Morphologically,
these processes form the following horizons:
Аh (0-10 cm) - Вt (10-35 cm) - Вt2 (35-72 cm) -
Вtк (72-86  cm)  -  Сk (86-120  cm).  The  soil-
forming materials according to YANEV et al.,
(1992;  1995) and  BOJINOVA-HAAPANEN,
(2014) are  Quaternary  diluvial-colluvial
materials  (non-sorted  gravel,  boulders  and
clay-sandy deposits) and Pliocene sediments
(yellow-rusty  clays  with  layered  structure,
usually calcaric, clays with sandy matrix and
gravel).  Profile  4.  Alluvial  soil,  moderately
deep,  slightly  stony  /Hypereutric  Fluvisol
(Loamic,  Somerimollic)/  distributed  in
“Drujba” industrial region (fig 4). This soil is
located  in  an  over  flooded  terrace  of  the
Iskar River,  in a virgin district,  next  to the
“Sofia  Iztok”  Thermal-electric  Power Plant.
Profile  development  is  limited  by  coarse
fragments  abundance  in  subsoil  and
therefore  the  soil  formation  processes
involve  only  the  uppermost  15  cm.  They
resulted  in  morphologically  simple  profile
organization: Аh (0-15 cm) – C1 (15-40 cm) –
C2 (40-80  cm).  Parent  materials  are  mostly
large  gravels  and  boulders  with  a  sandy
matrix  which  lie  onto  a  Pliocene  stratum
composed  of  sands  and  grey  or  green
coloured  clays  (YANEV et  al., 1992;  1995;
BOJINOVA-HAAPANEN,  2014).  Fig.  5  shows
profile  5  and  Alluvial  meadow  soil,
deep  /Hypereutric  Fluvisol  (Epiclayic,
Endoloamic,  Pachic)/  located  in  “Drujba”
residential  region.  It  is  formed  within  the
flooded  terrace  of  the  Iskar  River  by  fine-
particle  alluvial  sediments  of  a  Quaternary
and  Pliocene  origin  (ACHKOV et  al., 1972).
Profile  development  and  morphological
organization  is  also  marked  by  surface

accumulation  of  organic  matter  and
lithological clay differentiation by depth: Аh

(0-30 cm) – А2 (30-55 cm) – C1 (55-105 cm) –
C2 (105-155  cm).Profile  6  is  in  strongly
leached  Smolnitsa,  super  deep,  moderately
clayey  /Pellic  Vertisol  (Pantochernic,
Hypereutric,  Relictigleyic)/  distributed  in
“Mladost” residential region (fig 6). This soil
occupies  the  higher  part  of  the  previously
unexplored  soil  zone  and  neighbours  the
moderately  leached  Smolnitsa.  This  pedon
also  consists  of  organic  clays  (Smolnitsa),
which  foster  the  super  deep  A-horizon
development (reaching up to 165 cm depth).
Humus  horizon  directly  lies  on  parent
materials  -  grey-brown  Pliocene  clays
containing  calcareous  nuts  (YANEV et  al.,
1992; 1995; BOJINOVA-HAAPANEN, 2014).

Chemical studies
The cation exchange capacity
The  cation  exchange  capacity  (Equation

1), the base saturation level and the content of
the  main exchangeable  cations in  soils  were
determined  under  the  GANEV & ARSOVA
(1980) method . This method determines the
contribution  of  both  the  permanent,
preferential  charges  (on  basal  surfaces,  TCA)
and variation charges of soil colloids (basically
pH dependent exchange including the lateral
surfaces, TA) to the cation exchange capacity
by titration of soil extracts (obtained by mixed
solution  of  1.0  n  sodium  acetate  and  0.2  n
potassium maleate having pH 8.25) with 0.04 n
sodium hydroxide solution in the presence of
phenolphthalein  to  determine  TA and
subsequent titration of the above eluate with
0.04 n complexon III (after dilution up to 200
cm3 with deionized water and addition of 10
cm3 of  triethanolamine  and  2  cm3 of  5.0  n
potassium hydroxide solution, non-carbonate
to  achieve  pH  12-13)  in  the  presence  of
chromium-blue to determine ТCA (Equation 1):

T8.2=TCA+ TA (cmol/kg) (1)

Exchangeable  Al:  in  1.0  n  calcium
chloride filtrate obtained as a soil:extractant
ratio  1:25  by  titration  with  0.04  n  sodium
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hydroxide  in  the  presence  of
phenolphthalein.  When  soil  pH  <4.0,
exchangeable hydrogen ions, HA, should be
determined first - 1 drop of methyl orange is
added  to  the  calcium  chloride  filtrate  and
titrated with 0,04 n sodium hydroxide and
then this solution is treated to determine the
exchange aluminium.

Total  acidity  (exchange  H8.2)  is
calculated by the Equation 2:

exch.Al + HA = exch.H8.2 (cmol/kg) (2)

Exchangeable  calcium:  50  cm3 of  the
mixed sodium-acetate and potassium-maleate
solution is diluted with deionized water to 100
cm3. Then 5 cm3 of triethanolamine (1: 1), 1 cm3

5.0  n  potassium  hydroxide  solution  and  a
chromium blue (calcon) are added to achieve
intensive purple-red colouring. The solution is
titrated slowly with 0.01 n complexon III to a
deep blue colour.

Sum  of  exchangeable  calcium  and
magnesium: A new 50 cm3 of the filtrate is
filled up with deionized water to about 100
cm3. Five cm3 of triethanolamine (1: 1) and a
solid mixture of eriochrome black are added
to reach pH of  9.5-10.0 and titrated slowly
with  0.01  n  complexon  III  to  a  deep  blue
colour. Exchange magnesium is determined
by the  difference  between the  sum of  two
alkaline earth cations and exchange calcium.

The  base  saturation  level  (V)  is
calculated  in  percentages  as  the  difference
between  the  magnitude  of  total  cation
exchange  capacity  (T8.2)  and  total  acidity
(exchange H8.2) relative to the magnitude of
total cation exchange capacity.

Humic substances content and composition
The content of extractable humus fractions

was  determined  using  the  Kononova-
Belchikova  method  (FILCHEVA & TSADILAS,
2002) in four extracts at soil: solution ratio 1:20.

Total organic carbon was determined by
the modified dichromate oxidation method (the
oxidation of the soil sample with 0.4 N K2Cr2O7

and concentrated H2SO4 in a ratio 1:1 at 120 0С
for 45 min. in the presence of Ag2SO4 followed
by a titration with 0.2 N Mohr’s salt). Humus
content  is  calculated  by  multiplication  of
organic  carbon  content  with  the  coefficient
1.724.

Content  of  humic  (HA) and fulvic  (FA)
acids – in a mixed solution of 0,1 M Na4P2O7

and 0,1 M NaOH, and separation of FA by 0,5
M H2SO4 as an acidifying agent.

Content of free or linked to sesquioxides
humic  and  fulvic  acids  representing  the
potentially mobile HA and FA – extracted with
0,1 M NaOH.

Content of the low molecular (aggressive)
fraction of fulvic acids – in extracts with 0,05 M
H2SO4.

Optical hallmarks (E4/E6) are determined
in HA-fraction as a ratio of the optical densities
at 465 and 665 nm.

Elemental and speciation assays
Content of ferromagnesian trace elements

was  determined  after  sample  mineralization
with aqua regia (ISO 11466:1995) via AAC (ISO
11047:1998) on a Perkin-Elmer 2100.

Total nitrogen content was quantified by
the  modified  Kjeldahl  method  (BDS  ISO
11261:2002)  and  the  main  mineral  nitrogen
forms – by procedure of  BREMNER & KEENEY
(1965).

Carbonate  content  was  measured
following  ISO  10693:1995 protocol  which
reproduces the Scheibler method.

Sample pre-treatment and pH determination
Soil samples were pre-treated according to

BDS ISO method  (11464:2012) and pH was
measured in 2.5:1 water soil suspension (1 part
soil and 2.5 parts deionized water) according to
the protocol given by GANEV & ARSOVA (1980). 
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Fig. 1. View and location of profile 1 in overlapped moderately leached Smolnitsa.

Fig. 2. View and location of profile 2 in Technogenic soil.

Fig. 3. View and location of profile 3 in moderately leached Cinnamon forest soil.
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Fig. 4. View and location of profile 4 in Alluvial soil.

Fig. 5. Location and view of profile 5 in Alluvial meadow soil.

Fig. 6. Location and view of profile 6 in strongly leached Smolnitsa.
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Results and Discussion
Soils created as a result of urbanization

(profiles 1 and 2) are characterized with very
slightly  alkaline  reaction  (Table  1)  and
middle content of carbonates (in the interval
3-5%).  They  have  middle  colloidal  activity
(Т8,2 from 30 to 45 cmol/kg), according to the
classification  given  by  GANEV (1990) and
sorption  interactions,  transforming  the
slightly  acidic  positions  of  mineral  colloids
into the hydrogen-acidic complex. Due to the
presence of carbonates, this acidic-hydrogen
form  of  TA,  i.e.,  exchangeable  retention  of
hydrogen  cations  upon  the  slightly  acidic
positions  of  mineral  colloids  can  be
considered  physico-chemical  characteristic
of  soils,  which  originated  from  the
hydromorphic  stage  in  their  genesis  and
water self-ionization catalytic effect. Signs of
hydromorphism  are  evident  in  many  soil
characteristics  (clay  mineralogy,  organic
carbon state and transformation) and leave a
mark  on  their  current  genesis.  Concerning
clay  mineralogy,  the  predominance  of
mixed-layered  smectite-vermiculite
structures  was  found  in  Pliocene  clays
distributed  in  the  “Mladost”  residential
district  (BOJINOVA-HAAPANEN,  2014)  which
confirm  our  data  and  suggestions.  This
mineral  might  be  indirectly  identified
through the typically high total magnesium
content  (or  “pseudo”  total  content
determined in the aqua regia extract, Table
1). The sorption capacity which is not very
high also suggests  a lack of  pure smectites
and together with transformation of biotite
(that  is  present  in  Smolnitsas)  into
vermiculite  could  explain  CEC  values.
Magnesium,  despite  of  its  high  content,  is
not the main exchangeable cation and does
not cause magnesium salinization. 

Hydromorphism  and  further
transformation  of  the  mineral  matrix  turn
hydrogen in the second abundant exchange
ion  after  calcium.  As  a  result  of  high
hydrolytic  acidity  (exch.  Н8,2)  the  base
saturation  level  is  under  93%,  which  is
considered  a  critical  minimum  for  lack  of
deleterious  acidity  in  soils  (PALAVEEV &

TOTEV,  1985;  TRENDAFILOV,  1992).  The
deleterious  acidity  in  soils  is  not
accompanied  by  toxic  aluminium
availability (exch. Al) and possibility for Al
desorption in the soil solution – it is limited
only  to  destabilizing  role  and  chemical
activity of exchangeable hydrogen. 

The  content  of  hydrolytic  acidity  in
Technogenic  soils  (profile  2)  sharply
decreases under 21 cm depth (over 2 times)
and  that  positively  influences  subsoil  base
saturation status (V). Although the sorption
potential in surface horizon of Technosol is
generally  lower,  its  hydrolytic  acidity
content  is  close  to  that  in  topsoil  of  the
overlapped  Smolnitsa.  Obviously,  the
hydrolytic acidity in topsoil of these newly-
formed  soils  originated  from  biogenic
processes  associated  with  well-developed
meadow  vegetation  (TSOLOVA & TOMOV,
2018)  rather  than clay mineralogy,  because
this  is  the  only  profile  wherein  the
vermiculite  is  not  occurred  (as  we
mentioned  above  the  higher  content  of
magnesium  than  calcium  is  indicative  for
vermiculite presence). 

The  carbonates  in  the  Ah horizon  of
moderately  leached  Cinnamon  forest  soils
(profile 3) take part in neutralization of acid
products  generated  by  biodegradable
processes.  This  gradually  leads  to  their
depletion  and  acidification  of  soil
environment  to  рН  5.9.  The  strong  linear
correlations  shown  on  fig  7  reveal  the
prevalence  of  exchange  hydrogen  cations
onto  slightly  acidic  positions  and  pH
dependence  on  the  exchange  hydrogen
content.

The  exchangeable  acidity  (exch.  Al)
also occurs in topsoil in a concentration that
could  be  toxic  for  many  pasture  species
(CORANGAMITE REGION "BROWN BOOK").  It
usually  appears  as  a  result  of  acid
destruction of clay minerals,  which can be
seen in the ratios: Т8,2 in Ah/ Т8,2 in Ck < 1
and Т8,2 in Вtк/Т8,2 in Ck > 1 (GANEV, 1990).
The colloid degradation in Ah is  moderate
according  to  the classification  given  by
GANEV (1990) and shows that this process is
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still  running  slowly.  The  moderately
leached  Cinnamon  forest  soil  also  has
moderately  high  sorption  capacity  but
smaller  buffer  potential  which,  as  it  was
mentioned above,  decreases  as  a  result  of
increasing acidity in surface horizons.

Alluvial soils from the Iskar river valley
(profiles  4  and 5)  are  formed of  sediments
with  different  coarse  fragments  contents.
The stonier soils  (profile  4)  are moderately
colloidal  (Т8,2 from 20 to 30  cmol/kg)  with
high neutralizing potential (V over 80 cmol/
kg).  Their  acidic  systems  also  saturate  the
variation charges on colloidal surfaces with
hydrogen and evoke slightly acidic reaction
(according  to ATANASOV et  al.,  2009
classification)  -  6.1-6.9.  Studied  parameters
decrease  downwards  the  profile  depth,
resembling  the  distribution  in  some
normally  developed,  genetically  old  soils
and do not follow the lithological differences
between separate horizons.

Alluvial-meadow  soils  (profile  5)  are
moderately  colloidal  (Т8,2 from  30  to  45
cmol/kg) and mostly moderately acidic (рН
5,1-6,0).  They  have  the  highest  hydrolytic
acidity among studied soils and respectively
the  lowest  base  saturation level  within the
whole depth (Table 1).  The base saturation
level in the interval 77-86% defines a middle
range  of  deleterious  acidification  of  soils
according to the classification scheme set by
Bulgarian legislation (ORDINANCE № 4).

The  features  of  strongly  leached
Smolnitsa (profile 6) reveals the evolution of
soils distributed in the peripheral part of this
previously  unexplored  soil  zone.  They  are
neutral,  highly  colloidal  soils  with  high
neutralizing potential which is slightly lower
in  A’ and  A’’ as  a  result  of  the  listed
hypergenic  processes.  These  soils  are
distinguished with small amount of slightly
acidic  charges  (TА)  in  the  humus  horizon
which is presumably due to the slow in situ
transformation  of  biotite  into  vermiculite,
which  suggests  a  lack  of  defects  in  the
crystal  structures  (due  to  the  lack  of
transportation)  and  a  small  formation  of
lateral surfaces yet.  These processes can be

more clearly observed in the last sub-horizon
where the content of slightly acidic positions
is  the  smallest  and  the  content  of
exchangeable  magnesium  –  the  highest
(Table  1).  The  content  of  “pseudo-total“
magnesium  (from  565  to  607,5  mg/kg)  is
higher than the content of calcium (420-560
mg/kg)  within  the  whole  profile  depth
which evidences  for  the strong leaching of
carbonates  probably  in  the  form  of  iron
carbonates  due  to  the  low  content  of
“pseudo-total“ iron too (from 1,06 to 1,30%).
These data support the opinion of  STRANSKI
(1936) that a hidden process of podsolization
takes place in the black Sofian soils, since it
can't  be diagnosed by usual  morphological
features. This phenomenon is also observed
by  NIKOVA & TSOLOVA (2018) in  arable
Smolnitsas from the Sofia valley.

Organic matrix hallmarks
Surface  horizon  of  the  Overlapped

(Buried)  Smolnitsa  (profile  1,  Table  1)  is
very rich in organic matter (5.52% humus),
despite  of  soil  recent  creation  (about  45
years  ago).  The  humus  is  of  Mull  type,
abundant  in  humic  acids  (CHA/CFA  >  2,0)
which  dominated  along  the  entire  depth.
Humic acids are strongly condensed (E4/E6

=  3.87),  very  hydrophobic  and  slightly
mobile polymers. They are strongly bound
to  the  mineral  matrix  having in  mind the
dominance of Ca-humates (100%). The low
molecular  (aggressive)  fraction  of  fulvic
acids  is  also  present  in  descending
concentrations (from 0,8 in topsoil to 0,4 g/
kg  in  buried  horizon).  The  ratios  of  C:N
(14.04-10.40)  in  this  epipedon  indicate
middle to high enrichment of hydrocarbons
with  N  (Fig.  8).  These  N-dressed
compounds  are  active  source  of
ammonium-N  and  may  provoke  the  soil
toxicity  (BRITTO & KRONZUCKER,  2002).
Values obtained for main mineral forms of
N illustrate this trend (fig 8) considering a
principally low content of nitrate-N in soils.

The  basic  features  of  organic  matter
(OM) in surface horizon of Technogenic soils
(profile  2)  are:  morphologically
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homogeneous  humus  system  of  well
humificated organic matter (CHA: Ctotal x 100,
in  %  =  17.3%)  formed  by  soil-biomes
interactions  and  medium  humus  content
(2.59%);  Rhizomull  type of humus wherein
the  very  strongly  condensed  and  stable
humic  acids  (C4/E6 =  3,50)  are  absolutely
prevalent  (CHA/CFA =  3,25).  The  content  of
organic carbon (OC) sharply drops (up to 1.8
g/kg)  in  subsoil,  where  potentially  mobile
OM is only composed of FA (up to 33% of
total C). The degree of OC enrichment with
N  is  very  low  especially  in  topsoil  (C:N
21.74) and could be primary attached to the
features  of  newly  formed  organic  matter
originated  from  cereal  plant  species  which
are dominant in this ecosystem (TSOLOVA &
TOMOV,  2018),  soil  biota  activity  and  low
atmospheric inputs of N.

The  humus-accumulative  horizon  (Ah)
of Cinnamon forest soil (profile 3, Table 1) is
altered by erosion and this affected carbon
stocks  -  it  is  moderately  rich  in  organic
matter (2.86% humus) likewise Technogenic
and Alluvial soils. The prevalence of humic
acids is slightly pronounced there (CHA/CFA

=  1.17)  and  the  degree  of  condensation  of
their aromatic nuclei is lower (E4/E6 = 4.08),
although  this  does  not  change  HA
hydrophobicity  and  structure.  FA  content
sharply drops beneath 35 cm and positively
influenced  the  OM  humification  rate.  The
increase  content  of  humus  acids  fractions
evokes  the  naturally  occurring  leaching
process  and  acidification  of  pH  (5.9).  The
interaction  between  pH  and  potentially
mobile fractions of humus acids, respectively
fulvic acids is evidenced by the statistically
significant  correlation  between  them  (R²  =
0.73 for both fractions and R² = 0.85 for fulvic
acids).

C:N ratios (10.44-12.29) in this epipedon
indicates  high  degree  of  organic  matter
enrichment  with  nitrogen  and  respectively
similar rate of release of NH4-N. 

The status of organic matter in the next
three profiles (№№ 4, 5 and 6) differentiates
from  described  above.  All  of  them  are
characterized with almost  equal  amount  of

HA and FA or lack of HA (like in Alluvial
soils  -  profiles  4  and  5).  Fulvic  acids  are
mainly  mobile  and  partially  aggressive
having  in  mind  the  aggressive  fractions
contents (up to 25% of the total FA fraction).
HA are stable, strongly condensed polymers
mostly  bound  to  Ca.  Organic  matter  is
highly abundant in nitrogen but mineral N
content is lower than in profiles 1, 2 and 3
(C:N values fluctuate in the interval 8.6-20.2
with average value 11.54 mg/kg, Fig. 8). The
low variation of C:N values by depth reveals
the  ancient  age  of  humic  substances  and
their  stability in  diverse  soil  environments.
On the other hand, the older organic colloids
have  low  reactivity  (MCBRIDE et  al.,  1997;
BRADL,  2004;  COUTRIS et al., 2012) and high
resistance  to  biodegradation  and  therefore
play a minor role in CEC.

The  results  obtained  confirm  the
fundamental  finding  that  transformation
processes  of  biogenic  products  in  soils  are
much more intense than those of the mineral
components.  The  presented  study  shows
that biogenic transformation in the modern
urban  environment  is  a  multifactorial
process,  dependent  on  all  environmental
components. 

The elevated NH4 and NO3 contents in
profiles 1, 2 and 3 can be related to human
induced urea saturation of soils (they are also
used for  strolling  pets)  which  may entail  a
higher  rate  of  ammonification  and  amplify
the nitrogen cycling. In areas where organic
matter is more abundant in nitrogen (profile
4, 5 and 6) the main additional source of N is
greenhouse  gas  emissions  (or  their
precursors - NOx, CO and NMVOCs) which
may  also  affect  the  cycle  of  nitrogen
transformations.  All  profiles  are  located in
close  proximity  to  bustling  traffic  arteries
and  simultaneously  in  the  direction  of
prevailing  winds  (from  the  north  and
northeast)  which  distribute  the
contamination  from  the  industrial  zone
known  with  its  strong  negative  impact  on
the  environment  (UZUNOV et  al., 1996;
FAITONDJIEV et  al., 2000; DIMITROVA et  al.,
2010). The higher temperature of topsoils of
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profiles 4, 5 and 6 (up to 3-4 oC) supports the
assumption  for  differentiation  of  mineral
nitrogen  fluxes  during  the  anthropogenic
impact,  although the  significant  correlation
between organic nitrogen and carbon (fig 9)
shows  that  humus  is  the  major  source  of
nitrogen.  This  is  also  among  reasons  for
alkaline  pH  values  in  profiles  1,  2  and  3
regardless  of  photochemical  smog  and
nitrous  oxide  (dinitrogen  monoxide,  N2O)
acidifying effect. 

In  urban  environments  carbon  and
nitrogen  cycles  are  still  coupled  (Fig.  9),
although  the  plant  diversity  in  studied
ecosystems  does  not  imply  substantial
nitrogen revenues.

Some  more  important  statistic  data
regarding the organic carbon abundance can
be noted: the established average content of
organic carbon in the surface layer of studied

urban soils, 19.3 g/kg is almost 2-fold lower
than the content of organic carbon in virgin
leached  Smolnitsas  of  Bulgaria  -  35  g/kg
(FILCHEVA, 2007). This content is equivalent
to  the  average  content  (19.1  g/kg)  in  the
surface  horizon  of  grasslands  in  Bulgaria
(TÓTH et  al., 2013)  but  higher  than  the
content in topsoil of grasslands in the Sofia
valley - 12.5 g/kg (LUCAS 2015).

Comparing  the  results  for  the  mean
value  of  CEC  in  topsoil  of  Bulgarian
grasslands, extracted for LUCAS (2015) - 36,7
cmol/kg shows a close average value only
for  moderately  leached  Cinnamon  forest
soils  (profile  3)  and Alluvial-meadow soils
(profile 5). The lower content of clay fraction
and smectite-vermiculite as well, can explain
these  lowest  CEC  values  in  normally
supplied with organic carbon Alluvial soils
(profile 4).

Fig. 7. Correlations between hydrolytic acidity and variation charges TA (left), and
hydrolytic acidity and pH (right) in moderately leached Cinnamon forest soil.

Fig. 8. Mineral nitrogen content and C:N ratios in urban soils.
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Fig. 9. Correlations between total N and C content in root layers of urban soils, and mineral
N and pH (average values).

Table 1. Chemical data on studied urban soils in the city of Sofia.

Horizons
and

depths
(cm)

рН
Т8,2 ТСА ТА

exch.
Н8,2

exch.
Al

exch.
Ca

exch.
Mg

V
(%)

Total
С

Humic
acids

Fulvic
acids

Aggr.
FA

Easily
mobile
HA+FA

CHA/
CFA

Е4/Е6 Ca Mg

cmol/kg (%) AR extracts

Overlapped moderately leached Smolnitsa (profile 1)
Ahk
0-15 7.10 40.40 34.20 6.20 5.00 0.00 32.50 3.10 88.10 3.20 0.56 0.27 0.08 0.33 2.04 3.87 295.0 700.0

C1k
15-65 7.30 41.20 37.90 4.40 3.00 0.00 34.80 3.20 92.30 1.05 0.21 0.08 0.05 0.07 2.63 3.65 1990.0 800.0

А1b
65-110 7.00 41.10 34.50 6.60 6.00 0.00 32.10 3.40 86.40 1.66 0.40 0.20 0.04 0.16 2.00 3.56 1445.0 675.0

Average 7.13 40.90 35.53 5.73 4.67 0.00 33.13 3.23 88.93 1.97 0.39 0.18 0.06 0.19 2.22 3.69 1243.33 725.00

Technogenic soil, moderately deep (profile 2)
Ahk
0-21 7.25 33.40 28.40 5.00 4.60 0.00 26.00 2.80 86.20 1.50 0.26 0.08 0.04 0.11 3.25 3.50 2700.0 900.0

C1k
21-52 7.45 31.80 - - 2.10 0.00 26.50 3.20 93.30 0.23 0.00 0.07 0.02 0.04 - - 2510.0 900.0

C2k
52-85 7.50 32.70 - - 2.00 0.00 27.50 3.20 93.90 0.18 0.00 0.06 0.02 0.03 - - 1935.0 880.0

Average 7.40 32.63 28.40 5.00 2.90 0.00 26.67 3.07 91.13 0.64 0.09 0.07 0.03 0.06 1.08 1.17 2381.67 893.33

Moderately leached Cinnamon forest soil (profile 3)
Аh
0-10 5.85 35.80 28.80 7.00 6.50 0.30 24.50 4.80 81.80 1.66 0.28 0.24 0.04 0.30 1.17 4.08 270.0 575.0

Вt
10-35 6.05 40.00 33.00 7.00 6.30 0.00 29.50 4.60 85.25 1.02 0.22 0.15 0.04 0.14 1.47 4.12 210.0 590.0

Вt2
35-72 7.10 38.00 33.00 5.00 4.00 0.00 29.00 4.60 88.40 0.65 0.18 0.00 0.02 0.08 - 3.64 295.0 600.0

Вtк
72-86 7.30 38.00 35.20 2.80 2.00 0.00 31.80 4.30 95.00 0.48 0.17 0.00 0.02 0.04 - 3.96 835.0 450.0

Сk
86-120 8.00 37.50 0.00 0.00 0.00 0.00 33.10 4.40 100.00 0.37 0.12 0.00 0.02 0.04 - 4.28 5010.0 525.0

Average 6.86 37.86 26.00 4.36 3.76 0.06 29.58 4.54 90.09 0.84 0.19 0.08 0.03 0.12 0.53 4.02 1324.00 548.00
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Horizons
and

depths
(cm)

рН
Т8,2 ТСА ТА

exch.
Н8,2

exch.
Al

exch.
Ca

exch.
Mg

V
(%)

Total
С

Humic
acids

Fulvic
acids

Aggress.
FA

Easily
mobile
HA+
FA

CHA/
CFA

Е4/Е6 Ca Mg

cmol/kg (%) AR
extracts

Alluvial soil, moderately deep (profile 4)
Ah
0-15 6.30 21.80 16.50 5.30 4.00 0.00 15.00 2.80 81.65 1.57 0.21 0.20 0.04 0.24 1.05 4.06 470.0 552.5

C1
15-40 6.50 21.80 17.60 4.20 3.00 0.00 15.80 2.90 85.78 0.43 0.00 0.15 0.01 0.09 - - 285.0 585.0

C2
40-80 6.70 21.40 17.70 3.70 2.00 0.00 16.40 2.80 89.72 0.27 0.00 0.10 0.01 0.08 - - 475.0 577.5

Average 6.50 21.67 17.27 4.40 3.00 0.00 15.73 2.83 85.72 0.76 0.07 0.15 0.02 0.14 0.35 1.35 410.00 571.67

Alluvial meadow soil, deep (profile 5)
Ah
0-30 6.10 36.60 29.80 6.80 5.90 0.00 27.50 3.20 83.88 1.52 0.19 0.16 0.03 0.20 1.18 5.80 270.0 570.0

А1
30-55 6.00 37.40 30.80 6.60 5.60 0.00 28.70 3.40 85.80 1.15 0.17 0.12 0.03 0.14 1.42 4.78 260.0 580.0

C1
55-105 6.00 36.70 29.70 7.00 5.60 0.00 28.00 3.10 84.74 0.68 0.09 0.07 0.02 0.11 1.29 3.27 740.0 675.0

C2
105-155 6.00 35.00 27.60 7.40 5.80 0.00 26.00 3.00 82.86 0.35 0.00 0.14 0.00 0.10 - - 550.0 750.0

Average 6.03 36.43 29.48 6.95 5.73 0.00 27.55 3.18 84.32 0.93 0.11 0.12 0.02 0.14 0.97 3.46 455.00 643.75

Strongly leached Smolnitsa, super deep (profile 6)
А'

0-35 6.70 46.20 42.00 4.20 3.40 0.00 38.00 4.80 92.70 2.15 0.32 0.23 0.04 0.21 1.39 3.63 560.0 607.5

А"
35-90 6.70 46.00 41.90 4.10 3.30 0.00 37.60 4.90 92.40 1.52 0.25 0.19 0.03 0.13 1.32 3.34 420.0 595.0

А'"
90-165 6.75 45.60 43.50 2.10 1.70 0.00 34.60 9.30 96.30 0.87 0.15 0.07 0.02 0.10 2.14 3.35 480.0 565.0

Average 6.72 45.93 42.47 3.47 2.80 0.00 36.73 6.33 93.80 1.51 0.24 0.16 0.03 0.15 1.62 3.44 486.67 589.17

Conclusions
Main  alteration  of  pedo-chemical

characteristics of  studied  urban  soils are
result  of positive  and  negative
transformation  of  their  matrix.  Positive
changes  are  mostly  related  with  organic
matrix  and  intensive  processes  of  humus-
formation and  accumulation.  Main  factors
that favour accumulation of organic carbon
in studied soils are high content of silt and
clay  fractions  which  are  typically  humus
fractions since they contain high amount of
humus  and  humino-mineral  complexes;
organic clays, smolnitsas, comprising in the
parent materials of some soils (because they
are  rich  in  organic  carbon),  as  well  as  the
stability  of  humus  acids  and  their  low
mobility.  Stability of humic acids is  related
with their dense  heterocyclic  structure and
high nitrogen enrichment.  Recently  formed

humus is also well humificated  and rich in
highly  condensed  humic  acids.  For  this
reason,  organic  colloids  are  predominantly
mature,  persistent  and  slightly active.
Simultaneously, in acidic soil horizons even
a slight increase of FA content enhances the
pH dependence on their content. 

Positive  changes  of  the  mineral
matrix are derived from mineral colloids and
slow  transformation  of  biotite  into
vermiculite –  this  process  may  reduce  the
soil  hydrolytic  acidity.  Mineral  colloids
predominantly  determine  the  sorption
capacity  and  acidic  complexes  in  studied
soils. Negative changes of the mineral matrix
are provoked from:

Acid  destruction  of  clay  minerals
occurring  as a consequence of  the  naturally
occurring soil-forming  and  weathering
processes  of  low  intensity and  associated
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processes  of  slight dispersion  and
disintegration of the mineral matrix;

Increase  of  exchangeable hydrogen
content above the exchangeable magnesium
levels up to the second abundant exchange
ion  after  calcium although  the  H-
destabilizing  role  itself  is  difficult  to
distinguish.

Anthrogenically induced changes, where
they can be identified, can increase mineral N
content  and  fluxes  and  may  influence  the
existing  acid-base  status  of  soils  due  to  the
input of neutral, alkaline (urea, ammonia) or
acidifying  agents  (water  soluble  compounds
of  CO2,  NO2)  present  in  the  ground
troposphere of the Sofia city.
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