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Abstract

Two examples of 4-dimensional complex manifolds with Norden metric
are constructed by means of Lie groups and Lie algebras. Both manifolds
are characterized geometrically. The form of the curvature tensor for each
of the examples is obtained. Conditions these manifolds to be isotropic-
Kählerian are given. 1 2

Introduction

Almost complex manifolds with Norden metric are introduced in [9] as gener-
alized B-manifolds. These manifolds are classified into eight classes in [4], and
equivalent characteristic conditions for each of these classes are obtained in [5].

Examples of the basic classes W0, W1 and W2 of the integrable almost
complex manifolds with Norden metric are given in [2]. An example of the only
basic class W3 with a non-integrable almost complex structure is given in [10].

In this paper our purpose is to construct examples of two classes of inte-
grable almost complex manifolds with Norden metric, namely the class of the
Kähler manifolds with Norden metric and the class of the complex manifolds
with Norden metric. Both examples are 4-dimensional manifolds and they are
obtained by constructing 4-parametric families of Lie algebras corresponding
to real connected Lie groups. The manifolds obtained in this way are charac-
terized geometrically. In particular, we find the form of the curvature tensor
for each of the examples and we study the conditions these manifolds to be
isotropic-Kählerian.
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1 Almost complex manifolds with Norden
metric

1.1 Preliminaries

Let (M,J, g) be a 2n-dimensional almost complex manifold with Norden metric,
i.e. J is an almost complex structure and g is a metric on M such that

J2X = −X, g(JX, JY ) = −g(X,Y ) (1.1)

for all differentiable vector fields X, Y on M , i.e. X,Y ∈ X(M).
The associated metric g̃ of g given by g̃(X,Y ) = g(X, JY ) is a Norden

metric, too. Both metrics are necessarily indefinite of signature (n, n).
Further, X,Y, Z,W (x, y, z, w, respectively) will stand for arbitrary differen-

tiable vector fields on M (vectors in TpM , p ∈M , respectively).
Let ∇ be the Levi-Civita connection of the metric g. Then, the tensor field

F of type (0, 3) on M is defined by

F (X,Y, Z) = g ((∇XJ)Y, Z) . (1.2)

It has the following symmetries

F (X,Y, Z) = F (X,Z, Y ) = F (X, JY, JZ). (1.3)

Let {ei} (i = 1, 2, . . . , 2n) be an arbitrary basis of TpM at a point p of M
and let gij be the components of the inverse matrix of g with respect to this
basis.

The Lie form θ associated with F is defined by

θ(z) = gijF (ei, ej , z) (1.4)

and the corresponding Lie vector is denoted by Ω, i.e.

θ(z) = g(z,Ω). (1.5)

The Nijenhuis tensor field N given by

N(X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ]. (1.6)

By means of the covariant derivative of J this tensor is expressed as follows

N(X,Y ) = (∇XJ)JY − (∇Y J)JX + (∇JXJ)Y − (∇JY J)X. (1.7)

It is known [11] that the almost complex structure J is complex if it is integrable,
i.e. if N = 0.

A classification of the almost complex manifolds with Norden metric is intro-
duced in [4], where eight classes of these manifolds are characterized according

2



to the properties of F . The class W0 of the Kähler manifolds with Norden met-
ric, the three basic classes W1, W2, W3 and the class W1 ⊕W2 of the complex
manifolds with Norden metric are given as follows:

W0 : F (X,Y, Z) = 0;

W1 : F (X,Y, Z) = 1
2n [g(X,Y )θ(Z) + g(X,Z)θ(Y )

+g(X, JY )θ(JZ) + g(X, JZ)θ(JY )] ;

W2 : F (X,Y, JZ) + F (Y, Z, JX) + F (Z,X, JY ) = 0, θ = 0;

W3 : F (X,Y, Z) + F (Y, Z,X) + F (Z,X, Y ) = 0;

W1 ⊕W2 : N = 0 ⇔ F (X,Y, JZ) + F (Y,Z, JX) + F (Z,X, JY ) = 0.

(1.8)

Let R be the curvature tensor of ∇, i.e.

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (1.9)

The corresponding tensor of type (0, 4) is given by

R(X,Y, Z,W ) = g (R(X,Y )Z,W ) . (1.10)

The Ricci tensor ρ and the scalar curvatures τ and
∗
τ of R are defined by:

ρ(y, z) = gijR(ei, y, z, ej), τ = gijρ(ei, ej),
∗
τ = gijρ(ei, Jej). (1.11)

Definition 1.1 A tensor L of type (0, 4) is said to be curvature-like if it satisfies
the following conditions for any X,Y, Z,W ∈ X(M):

L(X,Y, Z,W ) = −L(Y,X,Z,W ) = −L(X,Y,W,Z);
L(X,Y, Z,W ) + L(Y, Z,X,W ) + L(Z,X, Y,W ) = 0.

(1.12)

Definition 1.2 A curvature-like tensor L is said to be Kählerian if

L(X,Y, JZ, JW ) = −L(X,Y, Z,W ), X, Y, Z,W ∈ X(M). (1.13)

Let S be a symmetric and J-hybrid tensor of type (0, 2), i.e.

S(X,Y ) = S(Y,X), S(JX, JY ) = −S(X,Y ). (1.14)

We consider the following curvature-like tensors of type (0, 4):

ψ1 (S) (X,Y, Z,W ) = g(Y, Z)S(X,W )− g(X,Z)S(Y,W )

+g(X,W )S(Y,Z)− g(Y,W )S(X,Z);

ψ2 (S) (X,Y, Z,W ) = g(Y, JZ)S(X, JW )− g(X, JZ)S(Y, JW )

+g(X, JW )S(Y, JZ)− g(Y, JW )S(X, JZ);

π1 = 1
2ψ1(g); π2 = 1

2ψ2(g); π3 = −ψ1 (g̃) = ψ2 (g̃) .

(1.15)
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It is well-known that the Weyl tensorW on a 2n-dimensional pseudo-Riemannian
manifold (2n ≥ 4) is defined by

W = R− 1
2n− 2

{
ψ1(ρ)−

τ

2n− 1
π1

}
. (1.16)

The Weyl tensor vanishes if and only if the manifold is conformally flat.
Let α = {x, y} be a non-degenerate 2-plane spanned by the vectors x, y ∈

TpM , p ∈M . Then, the sectional curvatures of α are given by:

ν(α; p) =
R(x, y, y, x)
π1(x, y, y, x)

,
∗
ν(α; p) =

R(x, y, y, Jx)
π1(x, y, y, x)

. (1.17)

We consider the following basic sectional curvatures in TpM with respect to
the structures J and g:

• holomorphic sectional curvatures if Jα = α;

• totally real sectional curvatures if Jα ⊥ α with respect to g.

In [8], a holomorphic bisectional curvature h(x, y) for a pair of holomorphic
2-planes α1 = {x, Jx} and α2 = {y, Jy} is defined by

h(x, y) = − R(x, Jx, y, Jy)√
π1(x, Jx, x, Jx)π1(y, Jy, y, Jy)

, (1.18)

where x, y do not lie along the totally isotropic directions, i.e. both couples
(g(x, x), g(x, Jx)) and (g(y, y), g(y, Jy)) are different from the couple (0, 0).
The holomorphic bisectional curvature is invariant with respect to the basis
of the 2-planes α1 and α2. In particular, if α1 = α2, then the holomorphic
bisectional curvature coincides with the holomorphic sectional curvature of the
2-plane α1 = α2.

Let us note that the square norm ‖∇J‖2 of ∇J is given by

‖∇J‖2 = gijgklg
(
(∇ei

J)ek, (∇ej
J)el

)
. (1.19)

Definition 1.3 [10] An almost complex manifold with Norden metric satisfying
the condition ‖∇J‖2 = 0 is called an isotropic Kähler manifold with Norden
metric.

It is clear that if a manifold belongs to the class W0, then it is isotropic
Kählerian. The inverse statement is not always true.

1.2 Geometric properties of complex manifolds with Nor-
den metric

It is well-known [13] that the curvature tensorR on any almost complex manifold
with Norden metric satisfies the identity

(∇XF ) (Y, Z, JW )− (∇Y F ) (X,Z, JW ) = R(X,Y, Z,W ) +R(X,Y, JZ, JW ).
(1.20)
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Further, we obtain by means of (1.2) and (1.3) the following property of ∇F

(∇XF ) (Y, JZ,W ) = − (∇XF ) (Y, Z, JW )− g ((∇XJ)Z, (∇Y J)W )

−g ((∇XJ)W, (∇Y J)Z) .
(1.21)

Theorem 1.1 Let (M,J, g) be a complex manifold with Norden metric. Then

S
X,Y,Z

{R(JX, JY, Z,W ) +R(X,Y, JZ, JW )} =

S
X,Y,Z

g ((∇XJ)Y − (∇Y J)X, (∇WJ)Z − (∇ZJ)W ) ,
(1.22)

where S is the cyclic sum by three arguments.
Proof. Since (M,J, g) belongs to the class W1 ⊕W2 of the complex manifolds
with Norden metric, the characteristic condition

F (Y,Z, JW ) + F (Z,W, JY ) + F (W,Y, JZ) = 0 (1.23)

holds. Then, by covariant differentiation of (1.23) we obtain

(∇XF ) (Y, Z, JW ) + (∇XF ) (Z,W, JY ) + (∇XF ) (W,Y, JZ)

+g ((∇XJ)W, (∇Y J)Z) + g ((∇XJ)Y, (∇ZJ)W ) + g ((∇XJ)Z, (∇WJ)Y ) = 0.
(1.24)

Taking into account (1.20), (1.21), (1.24) we get (1.22) after straightforward
computations.

Let us remark that the identity (1.22) is given in [7] as a corollary of the
main theorem proved there. We established (1.22) by direct computation.

In [8] three basic classes Li (i = 1, 2, 3) are introduced for a curvature-like
tensor L on an almost complex manifold with Norden metric:

L ∈ L1 ⇔ L(X,Y, JZ, JW ) = −L(X,Y, Z,W ), i.e. L is a Kähler tensor;

L ∈ L2 ⇔ L(X,Y, JZ, JW ) + L(Y,Z, JX, JW ) + L(Z,X, JY, JW ) = 0;

L ∈ L3 ⇔ L(JX, JY, JZ, JW ) = L(X,Y, Z,W ).
(1.25)

Definition 1.4 A curvature-like tensor L on an almost complex manifold with
Norden metric is said to be in the class L′

1 if it is invariant with respect to J ,
i.e.

L(X,Y, JZ, JW ) = L(X,Y, Z,W ), X, Y, Z,W ∈ X(M). (1.26)

It is clear that we have the following inclusion relations between the above
considered classes:

L1

L′
1

⊂ L2 ⊂ L3. (1.27)

By (1.1), (1.11), (1.14), (1.25) and (1.26) it is easy to prove the following
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Proposition 1.2 Let R be the curvature tensor on an almost complex manifold
with Norden metric. Then the following implications hold:

(i) If R is in L3, then its Ricci tensor ρ is J-hybrid, i.e. ρ(JX, JY ) = −ρ(X,Y );

(ii) If R is in L′
1, then

∗
τ = 0.

Next, Theorem 1.1 and Definition 1.4 imply

Corollary 1.3 Let (M,J, g) be a complex manifold with Norden metric and let
R belong to the class L′

1. Then, we have

S
X,Y,Z

g ((∇XJ)Y − (∇Y J)X, (∇ZJ)W − (∇WJ)Z) = 0. (1.28)

Further, let us denote

K(X,Y, Z,W ) = g ((∇XJ)Y − (∇Y J)X, (∇ZJ)W − (∇WJ)Z) . (1.29)

Then, (1.29) implies

K(X,Y, Z,W ) = −K(Y,X,Z,W ) = −K(X,Y,W,Z). (1.30)

By (1.30), Corollary 1.3 and Definition 1.1 we establish thatK is a curvature-
like tensor on any complex manifold with Norden metric if the curvature tensor
R is in L′

1. Moreover, by (1.7) and N = 0, it is easy to prove that

K(X,Y, JZ, JW ) = K(X,Y, Z,W ), (1.31)

i.e. the tensor K belongs to the class L′
1, too.

2 A Lie group as a 4-dimensional Kähler mani-
fold with Norden metric

Let V be a 4-dimensional real vector space and let us consider a structure of the
Lie algebra defined by the brackets [Ei, Ej ] = Ck

ijEk, where {E1, E2, E3, E4} is
a basis of V and Ck

ij ∈ R. Then, the Jacobi identity for Ck
ij

Ck
ijC

l
ks + Ck

jsC
l
ki + Ck

siC
l
kj = 0 (2.1)

holds.
Let G be the associated real connected Lie group and let {X1, X2, X3, X4}

be a global basis of left-invariant vector fields induced by the basis of V .
We define an invariant almost complex structure on G by the conditions:

JX1 = X3, JX2 = X4, JX3 = −X1, JX4 = −X2. (2.2)

Further, let us consider the left-invariant metric defined by

g(X1, X1) = g(X2, X2) = −g(X3, X3) = −g(X4, X4) = 1,

g(Xi, Xj) = 0 for i 6= j.
(2.3)
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The introduced metric is a Norden metric because of (2.2). In this way, the
induced 4-dimensional manifold (G, J, g) is an almost complex manifold with
Norden metric.

It is known [12] that a Lie group G, equipped with a complex structure J ,
is a complex Lie group if both, left and right translations on G are holomorphic
maps. On the corresponding Lie algebra g of G this condition is equivalent to

[X, JY ] = J [X,Y ] for all X,Y ∈ g, (2.4)

i.e. g is a complex Lie algebra. In this case the complex structure J is called
bi-invariant [6].

Let J , defined by (2.2), be a bi-invariant complex structure. Then, obviously,
(G, J, g) is a complex manifold with Norden metric. By (2.2) and (2.4) we obtain
the following conditions for the commutators of the basic vector fields

[X1, X4] = −[X2, X3] = J [X1, X2] = −J [X3, X4],

[X1, X3] = [X2, X4] = 0.
(2.5)

Thus, we can put the non-zero Lie brackets

[X1, X2] = −[X3, X4] = λ1X1 + λ2X2 + λ3X3 + λ4X4,

[X2, X3] = −[X1, X4] = λ3X1 + λ4X2 − λ1X3 − λ2X4,
(2.6)

where λi (i = 1, 2, 3, 4) are real parameters. By direct computations we prove
that the commutators (2.6) satisfy the Jacobi identity. Therefore, the conditions
(2.6) define a 4-parametric family of 4-dimensional real Lie algebras g.

Further, let us recall that a Lie algebra g is said to be solvable if its derived
series

D0g = g, D1g = [g, g], . . . , Dk+1g = [Dkg,Dkg], . . .

vanishes for some k ∈ N. Then, having in mind (2.6), it is easy to check that
D2g = {0} and thus the Lie algebras g are solvable.

2.1 Geometric characteristics of the constructed manifold

First, we establish the following

Theorem 2.1 Let (G, J, g) be the 4-dimensional complex manifold with Norden
metric and bi-invariant complex structure constructed by (2.2), (2.3) and (2.4),
and let g be the associated Lie algebra of G introduced by (2.6). Then, (G, J, g)
is a Kähler manifold with Norden metric.
Proof. Let ∇ be the Levi-Civita connection of g. Then, the following well-
known condition is valid

2g(∇XY,Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

+g([X,Y ], Z) + g([Z,X], Y ) + g([Z, Y ], X).
(2.7)
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Applying (2.2), (2.3) and the fact that J is a bi-invariant complex structure to
(2.7), we obtain

2g ((∇Xi
J)Xj , Xk) = g ([Xi, JXj ]− J [Xi, Xj ], Xk)

+g ([Xk, JXi]− [JXk, Xi], Xj) + g (J [Xk, Xj ]− [JXk, Xj ], Xi) = 0

for all i, j, k = 1, 2, 3, 4, i.e. ∇J = 0 on g. Therefore, by (1.8), the manifold
(G, J, g) belongs to the class W0 of the Kähler manifolds with Norden metric.

Next, by (2.3), (2.6) and (2.7) we find the components of the Levi-Civita
connection on the considered manifold as follows:

∇X1X1 = −∇X3X3 = −λ1X2 − λ3X4,

∇X1X2 = −∇X3X4 = λ1X1 + λ3X3,

∇X1X3 = ∇X3X1 = λ3X2 − λ1X4,

∇X1X4 = ∇X3X2 = −λ3X1 + λ1X3,

∇X2X1 = −∇X4X3 = −λ2X2 − λ4X4,

∇X2X2 = −∇X4X4 = λ2X1 + λ4X3,

∇X2X3 = ∇X4X1 = λ4X2 − λ2X4,

∇X2X4 = ∇X4X2 = −λ4X1 + λ2X3.

(2.8)

2.2 Curvature properties of the constructed manifold

Let R be the curvature tensor on (G, J, g) determined by (1.10). The condi-
tion ∇J = 0 implies R(X,Y )JZ = JR(X,Y )Z and thus R(X,Y, JZ, JW ) =
−R(X,Y, Z,W ) for any X,Y, Z,W ∈ g, i.e. R is a Kähler tensor. We denote
its components by Rijks = R(Xi, Xj , Xk, Xs) (i, j, k, s = 1, 2, 3, 4). Then, using
(2.8), we get the following non-zero components of R:

R1441 = R2332 = R1423 = −R1221 = −R3443 = −R1234 = λ2
1 + λ2

2 − λ2
3 − λ2

4,

R1241 = R2132 = −R3243 = −R4134 = 2 (λ1λ3 + λ2λ4) .
(2.9)

Further, taking into account that the inverse matrix of g has the form

(
gij

)
=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , (2.10)

we obtain by (1.11) and (2.9) the non-zero components ρij = ρ(Xi, Xj) of the
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Ricci tensor and the values of the scalar curvatures τ and
∗
τ as follows:

ρ11 = ρ22 = −ρ33 = −ρ44 = −2
(
λ2

1 + λ2
2 − λ2

3 − λ2
4

)
,

ρ13 = ρ24 = 4 (λ1λ3 + λ2λ4) ,

τ = −8
(
λ2

1 + λ2
2 − λ2

3 − λ2
4

)
,

∗
τ = 16 (λ1λ3 + λ2λ4) .

(2.11)

Obviously, the scalar curvatures of (G, J, g) are constant.
Let us consider the characteristic 2-planes αij spanned by the basic vectors

{Xi, Xj} at an arbitrary point of the manifold:

• totally real 2-planes - α12, α14, α23, α34;

• holomorphic 2-planes - α13, α24.

Then, having in mind (1.15), (1.17) and (2.9), we obtain the corresponding
sectional curvatures:

ν(α12) = ν(α34) = ν(α14) = ν(α23) = −
(
λ2

1 + λ2
2 − λ2

3 − λ2
4

)
,

∗
ν(α12) =

∗
ν(α34) =

∗
ν(α14) =

∗
ν(α23) = 2 (λ1λ3 + λ2λ4) ,

ν(α13) = ν(α24) =
∗
ν(α13) =

∗
ν(α24) = 0.

(2.12)

Thus, (G, J, g) is of constant totally real sectional curvatures.
By (1.18) and (2.9) we establish that the holomorphic bisectional curva-

ture of the unique pair of basic holomorphic 2-planes {α13, α24} vanishes, i.e.
h(X1, X2) = 0.

It has been proved [1] that a Kähler manifold with Norden metric (M,J, g)
(dimM = 2n ≥ 4) is of pointwise constant sectional curvatures ν and

∗
ν for any

non-degenerate totally real 2-plane α in TpM , if and only if

R = ν {π1 − π2}+
∗
νπ3. (2.13)

Both functions ν and
∗
ν are constant if M is connected and dimM ≥ 6.

Then, by this statement and (2.12) we obtain

Theorem 2.2 The curvature tensor R of the Kähler manifold (G, J, g) has the
form (2.13).

It is clear that the equations (2.12) and (2.13) immediately imply ∇R = 0,
i.e. the manifold (G, J, g) is locally symmetric.

The form (2.13) of R implies

ρ =
1
4

{
τg − ∗

τ g̃
}
, ν =

τ

8
,

∗
ν =

∗
τ

8
. (2.14)

Then, taking into account (1.15), (1.16), (2.13) and (2.14), we obtain the Weyl
tensor of the manifold as follows

W =
τ

24
{π1 − 3π2} . (2.15)

Theorem 2.2 and the equalities (2.11), (2.14) and (2.15) imply
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Corollary 2.3 The following conditions are equivalent :

(i) R = τ
8 {π1 − π2};

(ii)
∗
τ = 0;

(iii) λ3 = kλ2, λ4 = −kλ1, |k| 6= 1 or λ2 = kλ1, λ3 = −kλ4, |λ1| 6= |λ4|;

(iv) ρ = τ
4 g, i.e. the manifold is Einsteinian.

Corollary 2.4 The following conditions are equivalent :

(i) R =
∗
τ
8π3;

(ii) τ = 0;

(iii) |λ1| = |λ3|, |λ2| = |λ4| or λ1 = λ4, λ2 = λ3 or λ1 = −λ4, λ2 = −λ3;

(iv) the Weyl tensor vanishes.

It is clear that the manifold (G, J, g) in Corollary 2.4 is conformally equiva-
lent to a flat manifold.

3 A Lie group as a 4-dimensional complex man-
ifold with Norden metric

LetG be a real connected Lie group, and let g be its Lie algebra. If {X1, X2, X3, X4}
is a global basis of left-invariant vector fields of G, we define an invariant almost
complex structure J and a left-invariant Norden metric g on G by the condi-
tions (2.2) and (2.3), respectively. Then, as in the previous section, (G, J, g) is
an almost complex manifold with Norden metric.

It is known [3] that an almost complex structure J on a Lie group G is said
to be abelian if

[JX, JY ] = [X,Y ] for all X,Y ∈ g. (3.1)

It follows from (3.1) that the Nijenhuis tensor vanishes on g, i.e. J is a com-
plex structure. Thus, (G, J, g) is a complex manifold with Norden metric, i.e.
(G, J, g) ∈ W1 ⊕W2.

Now, let us consider the Lie algebra g of G. If J , determined by (2.2), is an
abelian complex structure we obtain

Proposition 3.1 Let (G, J, g) be a 4-dimensional complex manifold with Nor-
den metric and abelian complex structure defined by (2.2) and (2.3). Then the
Lie algebra g of G is given as follows:

[X1, X2] = [X3, X4], i.e. Ck
12 = Ck

34,

[X1, X4] = [X2, X3], i.e. Ck
14 = Ck

23,

[X1, X3] = Ck
13Xk, [X2, X4] = Ck

24Xk,

(3.2)

where Ck
ij ∈ R (i, j, k = 1, 2, 3, 4) satisfy the Jacobi identity.
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Further, we construct our example by putting

Ck
12 = Ck

34 = Ck
14 = Ck

23 = 0, k = 1, 2, 3, 4.

In this case the Jacobi identity (2.1) implies

[X1, X3] = λ1X1 + λ3X3,

[X2, X4] = λ2X2 + λ4X4,
(3.3)

where λi ∈ R (i = 1, 2, 3, 4). Thus, the conditions (3.3) define a family of
4-dimensional real Lie algebras g, which is characterized by four parameters.

It has been proved [3] that if a Lie algebra g admits an abelian complex
structure then g is solvable. Therefore, the above considered Lie algebras (3.3)
are solvable.

3.1 Geometric characteristics of the constructed manifold

Having in mind (2.3), (2.7) and (3.3) we obtain the following non-zero compo-
nents of the Levi-Civita connection of (G, J, g):

∇X1X1 = λ1X3, ∇X2X2 = λ2X4,

∇X1X3 = λ1X1, ∇X2X4 = λ2X2,

∇X3X1 = −λ3X3, ∇X4X2 = −λ4X4,

∇X3X3 = −λ3X1, ∇X4X4 = −λ4X2.

(3.4)

Then, by (2.2) and (3.4) we obtain the following non-zero components of ∇J :

(∇X1J)X1 = 2λ1X1, (∇X2J)X2 = 2λ2X2,

(∇X1J)X3 = −2λ1X3, (∇X2J)X4 = −2λ2X4,

(∇X3J)X1 = −2λ3X1, (∇X4J)X2 = −2λ4X2,

(∇X3J)X3 = 2λ3X3, (∇X4J)X4 = 2λ4X4.

(3.5)

Next, taking into account (1.2), (2.3) and (3.5), we get the non-zero compo-
nents Fijk = F (Xi, Xj , Xk) of F as follows:

F111 = F133 = 2λ1, F222 = F244 = 2λ2,

F311 = F333 = −2λ3, F422 = F444 = −2λ4.
(3.6)

According to (1.4), (2.10) and (3.6), the components θi = θ(Xi) and θ∗i = θ∗(Xi)
of the Lie forms θ and θ∗ = θ ◦ J are the following:

θ1 = 2λ1, θ2 = 2λ2, θ3 = 2λ3, θ4 = 2λ4;
θ∗1 = 2λ3, θ∗2 = 2λ4, θ∗3 = −2λ1, θ∗4 = −2λ2.

(3.7)
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By (3.4) and (3.7) we get that (∇Xiθ
∗)Xj = (∇Xjθ

∗)Xi, (i, j = 1, 2, 3, 4),
i.e. the Lie form θ∗ is closed on (G, J, g).

Let Ω be the corresponding Lie vector of θ. Then, JΩ corresponds to θ∗ as
its Lie vector and by (1.5), (2.3), (2.10), (3.4) and (3.7) we have

θ(Ω) = 2div(JΩ) = 4
(
λ2

1 + λ2
2 − λ2

3 − λ2
4

)
, (3.8)

where div(JΩ) = gij(∇Xi
θ∗)Xj .

Next, in view of (1.19), we obtain from (2.3), (2.10) and (3.5) the square
norm of ∇J as

‖∇J‖2 = 8
(
λ2

1 + λ2
2 − λ2

3 − λ2
4

)
. (3.9)

Having in mind Definition 1.3, the last equality implies

Proposition 3.2 The manifold (G, J, g) is isotropic Kählerian if and only if
the condition λ2

1 + λ2
2 − λ2

3 − λ2
4 = 0 holds.

3.2 Curvature properties of the constructed manifold

Let R be the curvature tensor of type (0, 4) of (G, J, g). By (1.10) and (3.4) we
get the non-zero components of R as follows:

R1331 = −
(
λ2

1 − λ2
3

)
, R2442 = −

(
λ2

2 − λ2
4

)
. (3.10)

Then, according to (2.2), (3.10) and Definition 1.4, we obtain

Theorem 3.3 The curvature tensor R of (G, J, g) belongs to the class L′
1 and

has the form

R(X,Y, Z,W ) = −1
4
g ((∇XJ)Y − (∇Y J)X, (∇ZJ)W − (∇WJ)Z) . (3.11)

Proof. LetX = xiXi , Y = yiXi , Z = ziXi , W = wiXi , where xi, yi, zi, wi ∈
R (i = 1, 2, 3, 4), be arbitrary vectors in g. By (3.10) we have

R(X,Y, Z,W ) =
(
λ2

1 − λ2
3

) (
x1y3 − x3y1

) (
z1w3 − z3w1

)
+

(
λ2

2 − λ2
4

) (
x2y4 − x4y2

) (
z2w4 − z4w2

)
.

(3.12)

Then, (1.28) and (3.5) imply that the right-hand side of (3.11) is equal to that
of (3.12).

Proposition 3.4 The curvature tensor R of the manifold (G, J, g) satisfies

R(X,Y, Z,W ) = g ([X,Y ], [Z,W ]) . (3.13)

Proof. The validity of (3.13) follows from (3.3) and (3.12) by direct computa-
tions as in Theorem 3.3.

12



Further, according to (3.4) and (3.10), we obtain(
∇XiR

)
(Xj , Xk, Xl, Xs) = 0 (3.14)

for all i, j, k, l, s = 1, 2, 3, 4. Thus, we establish

Proposition 3.5 The manifold (G, J, g) is locally symmetric.

By (1.11), (2.10) and (3.10) we compute the non-zero components ρij =
ρ(Xi, Xj) of the Ricci tensor and the value of the scalar curvature τ :

ρ11 = −ρ33 = λ2
1 − λ2

3, ρ22 = −ρ44 = λ2
2 − λ2

4, τ = 2
(
λ2

1 + λ2
2 − λ2

3 − λ2
4

)
.

(3.15)
Proposition 3.2 and (3.15) imply

Proposition 3.6 The manifold (G, J, g) is isotropic Kählerian if and only if it
is scalar flat.

Taking into account (2.3) and (3.15), we prove the following

Theorem 3.7 The manifold (G, J, g) is Einstein if and only if the conditions
|λ1| = |λ2|, |λ3| = |λ4| hold.

Let αij be a non-degenerate 2-plane spanned by the basic vectors {Xi, Xj}
at an arbitrary point of the manifold. Then, by (1.15), (1.17) and (3.10), we
obtain the corresponding sectional curvatures as follows:

ν(α13) = λ2
1 − λ2

3, ν(α24) = λ2
2 − λ2

4,

ν(α12) = ν(α14) = ν(α23) = ν(α34) = 0,
(3.16)

i.e. (G, J, g) is of vanishing totally real sectional curvatures. Moreover, (3.16)
and Theorem 3.7 imply

Proposition 3.8 The manifold (G, J, g) is of constant non-zero holomorphic
sectional curvatures if and only if it is Einstein.

Taking into account (1.15), (1.18) and (3.10), we establish that the holo-
morphic bisectional curvature of the unique pair of basic holomorphic 2-planes
{α13, α24} vanishes.

Now, let us consider the Weyl tensor W on (G, J, g). From (1.15), (3.10)
and (3.15), we get the non-zero components of W as follows:

W1331 = W2442 = 2W1221 = 2W3443 = −2W1441

= −2W2332 = − 1
3

(
λ2

1 + λ2
2 − λ2

3 − λ2
4

)
.

(3.17)

Hence, (1.16), Proposition 3.2 and Proposition 3.6 imply

Proposition 3.9 The manifold (G, J, g) is isotropic Kählerian if and only if
the Weyl tensor vanishes. In this case the curvature tensor has the form

R =
1
2
ψ1(ρ). (3.18)
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Having in mind (3.8) and Prepositions 3.2, 3.6 and 3.9, we finally obtain

Theorem 3.10 The following conditions are equivalent :

(i) (G, J, g) is isotropic Kählerian;

(ii) (G, J, g) is scalar flat ;

(iii) the condition λ2
1 + λ2

2 − λ2
3 − λ2

4 = 0 holds;

(iv) the curvature tensor has the form R = 1
2ψ1(ρ);

(v) the Weyl tensor vanishes;

(vi) θ(Ω) = 2div(JΩ) = 0.
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manifolds with Norden metric, Riv. Math. Univ. Parma 15 (4) (1989), 133–
141.

[3] I. Dotti, Hypercomplex nilpotent Lie groups, Contemporary Math. 288
(2001), 310–314.

[4] G. Ganchev, A. Borisov, Note on the almost complex manifolds with a
Norden metric, Compt. Rend. Acad. Bulg. Sci. 39(5) (1986), 31–34.

[5] G. Ganchev, K. Gribachev, V. Mihova, B-connections and their confor-
mal invariants on conformally Kähler manifolds with B-metric, Publ. Inst.
Math. (Beograd) (N.S.) 42(56) (1987), 107–121.

[6] M. Goze, E. Remm, Non existence of complex structures on filiform
Lie algebras, Comm. In Algebra 30(8) (2002), 3777-3788. Available at
arXiv:math.RA/0103035.

[7] K. Gribachev, G. Djelepov, On the geometry of the normal generalized B-
manifolds, Plovdiv Univ. Sci. Works - Math. 23(1) (1985), 157–168.

[8] K. Gribachev, G. Djelepov, D. Mekerov, On some subclasses of generalized
B-manifolds, Compt. Rend. Acad. Bulg. Sci. 38(4) (1985), 437–440.

[9] K. Gribachev, D. Mekerov, G. Djelepov Generalized B-manifolds, Compt.
Rend. Acad. Bulg. Sci. 38(3) (1985), 299–302.

14



[10] K. Gribachev, M. Manev, D. Mekerov, A Lie group as a 4-dimensional
quasi-Kähler manifold with Norden metric, JP J Geom. Topol. 6(1) (2006),
55–68.

[11] A. Newlander, L. Nirenberg, Complex analytic coordinates in almost com-
plex manifolds, Ann. Math. 65 (1957), 391–404.

[12] G. Ovando, Invariant pseudo Kähler metrics in dimension four, Available
at arXiv:math.DG/0410232.

[13] M. Teofilova, Complex connections on complex manifolds with Norden met-
ric, Contemporary Aspects of Complex Analysis, Differential Geometry and
Mathematical Physics, eds. S. Dimiev and K. Sekigawa, World Sci. Publ.,
Singapore (2005), 326–335.

M. Teofilova, K. Gribachev
Faculty of Mathematics and Informatics
University of Plovdiv
236, Bulgaria Blvd.
Plovdiv 4003, Bulgaria
mar@gbg.bg, costas@pu.acad.bg

15


