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An example of a four-dimensional conformal Kähler manifold with Norden
metric is constructed on a Lie group. The form of the curvature tensor is
obtained and the isotropic-Kähler properties of the manifold are studied.

Introduction

Almost complex manifolds with Norden metric are originally introduced
in 7 as generalized B-manifolds. These manifolds are classified into eight
classes in 3, and equivalent characteristic conditions for each of the classes
are obtained in 4. Examples of the basic classes of the integrable almost
complex manifolds with Norden metric are given in 1. An example of the
only basic class of the considered manifolds with a non-integrable almost
complex structure is introduced in 6.

In this paper we present an example of a four-dimensional conformal
Kähler manifold with Norden metric which is obtained by constructing a
four-parametric family of Lie algebras. We obtain the form of the curva-
ture tensor and we study the conditions the given manifold to be isotropic
Kählerian.

1. Almost complex manifolds with Norden metric

Let (M,J, g) be a 2n-dimensional almost complex manifold with Norden
metric, i.e. J is an almost complex structure and g is a metric on M such
that

J2X = −X, g(JX, JY ) = −g(X,Y ) (1)

for all differentiable vector fields X, Y on M , i.e. X,Y ∈ X(M).
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The associated metric g̃ of g, given by g̃(X,Y ) = g(X, JY ), is a Norden
metric, too. Both metrics are necessarily neutral, i.e. of signature (n, n).

Further, X,Y, Z,W (x, y, z, w, respectively) will stand for arbitrary dif-
ferentiable vector fields on M (vectors in TpM , p ∈M , respectively).

If ∇ is the Levi-Civita connection of the metric g, the tensor field F

of type (0, 3) on M is defined by F (X,Y, Z) = g ((∇XJ)Y,Z) and has the
following symmetries

F (X,Y, Z) = F (X,Z, Y ) = F (X, JY, JZ). (2)

Let {ei} (i = 1, 2, . . . , 2n) be an arbitrary basis of TpM at a point p
of M . The components of the inverse matrix of g are denoted by gij with
respect to the basis {ei}. The Lie forms θ and θ∗ associated with F , and
the Lie vector Ω, corresponding to θ, are defined by, respectively

θ(z) = gijF (ei, ej , z), θ∗ = θ ◦ J, θ(z) = g(z,Ω). (3)

The Nijenhuis tensor field N is given as N(X,Y ) = [JX, JY ]− [X,Y ]−
J [JX, Y ]− J [X, JY ]. It is known 8 that the almost complex structure J is
complex, if and only if N = 0.

A classification of the almost complex manifolds with Norden metric is
introduced in 3, where eight classes of these manifolds are characterized
according to the properties of F . The three basic classes and the class
W1 ⊕W2 of the complex manifolds with Norden metric are given by:

W1 : F (X,Y, Z) = 1
2n [g(X,Y )θ(Z) + g(X,Z)θ(Y )

+g(X, JY )θ(JZ) + g(X, JZ)θ(JY )] ;

W2 : F (X,Y, JZ) + F (Y,Z, JX) + F (Z,X, JY ) = 0, θ = 0;

W3 : F (X,Y, Z) + F (Y, Z,X) + F (Z,X, Y ) = 0;

W1 ⊕W2 : F (X,Y, JZ) + F (Y,Z, JX) + F (Z,X, JY ) = 0.

(4)

The classW0 of the Kähler manifolds with Norden metric is given by F = 0.
Let R be the curvature tensor of ∇, i.e. R(X,Y )Z = ∇X∇Y Z −

∇Y∇XZ −∇[X,Y ]Z and R(X,Y, Z,W ) = g (R(X,Y )Z,W ).
The Ricci tensor ρ and the scalar curvatures τ and

∗
τ of R are given by:

ρ(y, z) = gijR(ei, y, z, ej), τ = gijρ(ei, ej),
∗
τ = gijρ(ei, Jej). (5)

It is well known that the Weyl tensor W on a 2n-dimensional pseudo-
Riemannian manifold (2n ≥ 4) is determined by

W = R− 1
2n− 2

{
ψ1(ρ)−

τ

2n− 1
π1

}
, (6)
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where

ψ1

(
ρ
)
(X,Y, Z,W ) = g(Y, Z)ρ(X,W )− g(X,Z)ρ(Y,W )

+g(X,W )ρ(Y, Z)− g(Y,W )ρ(X,Z),

π1(X,Y, Z,W ) = g(Y, Z)g(X,W )− g(X,Z)g(Y,W ).

(7)

The Weyl tensor vanishes if and only if the manifold is conformally flat.
Let α = {x, y} be a non-degenerate two-plane spanned by the vectors

x, y ∈ TpM , p ∈M . Then, the sectional curvature of α is given by:

ν(α; p) =
R(x, y, y, x)
π1(x, y, y, x)

. (8)

We consider the following basic sectional curvatures in TpM with respect
to the structures J and g: holomorphic sectional curvatures if Jα = α and
totally real sectional curvatures if Jα ⊥ α with respect to g.

The square norm ‖∇J‖2 of ∇J is introduced in 5 by

‖∇J‖2 = gijgklg
(
(∇ei

J)ek, (∇ej
J)el

)
. (9)

Then, the definition of F , (2) and (9) imply

‖∇J‖2 = gijgklgpqFikpFjlq, Fikp = F (ei, ek, ep). (10)

Definition 1.1. 6 An almost complex manifold with Norden metric, satis-
fying the condition ‖∇J‖2 = 0, is said to be isotropic Kählerian.

It is known 9 that the curvature tensor R on any almost complex man-
ifold with Norden metric satisfies the identity

(∇XF ) (Y,Z, JW )−(∇Y F ) (X,Z, JW ) = R(X,Y, Z,W )+R(X,Y, JZ, JW ).
(11)

Further, by (2) and (3) we obtain the following properties:(
∇XF

)
(Y, Z,W ) =

(
∇XF

)
(Y,W,Z);

(∇XF ) (Y, JZ,W ) = − (∇XF ) (Y, Z, JW )− g ((∇XJ)Z, (∇Y J)W )

−g ((∇XJ)W, (∇Y J)Z) ;(
∇Xθ

∗)Y =
(
∇Xθ

)
JY + F (X,Y,Ω); θ(Ω) = gikgjlg

(
(∇eiJ)ek, (∇ejJ)el

)
.

(12)
Let us denote

∗∗
τ = gilgjkR(ei, ej , Jek, Jel). If R is a Kähler tensor, i.e.

if R(X,Y, JZ, JW ) = −R(X,Y, Z,W ), we have
∗∗
τ = −τ .

Let (M,J, g) be in W1 ⊕W2. Then, by (4) and (9) we get

2gilgjkg
(
(∇ei

J)ek, (∇ej
J)el

)
= ‖∇J‖2 . (13)
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Theorem 1.1. On a complex manifold with Norden metric it is valid

τ +
∗∗
τ + θ(Ω)− 2div(JΩ) =

1
2
‖∇J‖2 , (14)

where div(JΩ) = ∇iJ
i
kΩk.

Proof. By the properties (12), from (11) we obtain(
∇XF

)
(Y, Z, JW ) +

(
∇Y F

)
(X,W, JZ) + g

(
(∇XJ)Z, (∇Y J)W

)
+g

(
(∇XJ)W, (∇Y J)Z

)
= R(X,Y, Z,W ) +R(X,Y, JZ, JW ).

(15)

Then, taking into account (12), (13) and ∇g = 0, the total trace of (15)
implies (14).

It has been proved 10 that on a W1-manifold with Norden metric it is
valid ‖∇J‖2 = 2

nθ(Ω) . Then, Theorem 1.1 induces

Corollary 1.1. On a W1-manifold with Norden metric we have

τ +
∗∗
τ − 2div(JΩ) = −n− 1

2
‖∇J‖2 . (16)

The equality (16) and Definition 1.1 immediately imply

Corollary 1.2. A W1-manifold with Norden metric is isotropic Kählerian
if and only if τ +

∗∗
τ = 2div(JΩ).

Further, let us consider the class W2. By (4) and (14) it follows

Corollary 1.3. On a W2-manifold with Norden metric it is valid

2
(
τ +

∗∗
τ

)
= ‖∇J‖2 . (17)

Then, Corollary 1.3 and Definition 1.1 give rise to

Corollary 1.4. A W2-manifold with Norden metric is isotropic Kählerian
if its curvature tensor R is Kählerian.

2. A Lie group as a four-dimensional conformal Kähler
manifold with Norden metric

Let g be a real four-dimensional Lie algebra corresponding to a real con-
nected Lie group G. If {X1, X2, X3, X4} is a global basis of left invariant
vector fields on G and [Xi, Xj ] = Ck

ijXk, then the Jacobi identity is valid:

Ck
ijC

l
ks + Ck

jsC
l
ki + Ck

siC
l
kj = 0. (18)
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We define an almost complex structure on G by the conditions:

JX1 = X3, JX2 = X4, JX3 = −X1, JX4 = −X2. (19)

Let us consider the left-invariant metric given by

g(X1, X1) = g(X2, X2) = −g(X3, X3) = −g(X4, X4) = 1,

g(Xi, Xj) = 0 for i 6= j.
(20)

The introduced metric is Norden because of (19). Hence the induced 4-
dimensional manifold (G, J, g) is an almost complex manifold with Norden
metric.

It is known 2 that an almost complex structure J on a Lie group G is
said to be abelian if

[JX, JY ] = [X,Y ] for all X,Y ∈ g. (21)

From (21) we derive that the Nijenhuis tensor vanishes on g, i.e. J is a com-
plex structure. Thus, (G, J, g) is a complex manifold with Norden metric.

The well-known equality

2g(∇XY, Z) = Xg(Y,Z) + Y g(X,Z)− Zg(X,Y )

+g([X,Y ], Z) + g([Z,X], Y ) + g([Z, Y ], X)
(22)

implies

2F (Xi, Xj , Xk) = g ([Xi, JXj ]− J [Xi, Xj ], Xk)

+g ([Xk, JXi]− [JXk, Xi], Xj) + g (J [Xk, Xj ]− [JXk, Xj ], Xi) .
(23)

Let (G, J, g) be a W1-manifold. Then, by (3), (4), (21) and (23) we get

Lemma 2.1. If (G, J, g) is a four-dimensional W1-manifold, admitting an
Abelian complex structure, the Lie algebra g of G is given by:

C1
13 = C2

14 − C4
12, C

2
13 = C3

12 − C1
14, C

3
13 = C2

12 + C4
14, C

4
13 = −C1

12 − C3
14,

C1
24 = −C4

12 − C2
14, C

2
24 = C3

12 + C1
14, C

3
24 = C2

12 − C4
14, C

4
24 = C3

14 − C1
12,

(24)
where Ck

ij ∈ R (i, j, k = 1, 2, 3, 4) must satisfy the Jacobi identity (18).

One solution to the equations (18) and (24) is the four-parametric family
of Lie algebras g defined by

[X1, X4] = [X2, X3] = λ1X1 + λ2X2 + λ3X3 + λ4X4,

[X1, X3] = −[X2, X4] = λ2X1 − λ1X2 + λ4X3 − λ3X4,
(25)

where λi ∈ R (i = 1, 2, 3, 4). Thus, by (25) we obtain a four-parametric
family of four-dimensional W1-manifolds with Norden metric.
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It has been proved 2 that if a Lie algebra admits an abelian complex
structure, then it is solvable. Therefore, the Lie algebras (25) are solvable.

By (20), (22) and (25) we obtain the non-zero components of the Levi-
Civita connection of (G, J, g):

∇X1X1 = ∇X2X2 = λ2X3 + λ1X4, ∇X3X3 = ∇X4X4 = −λ4X1 − λ3X2,

∇X1X3 = ∇X4X2 = λ2X1 − λ3X4, ∇X1X4 = −∇X3X2 = λ1X1 + λ3X3,

∇X2X4 = ∇X3X1 = λ1X2 − λ4X3, ∇X2X3 = −∇X4X1 = λ2X2 + λ4X4.
(26)

Then, by (19), (20) and (23) we get the following essential non-zero com-
ponents Fijk = F (Xi, Xj , Xk) of the tensor F :

1
2F222 = F112 = F314 = λ1,

1
2F111 = F212 = −F414 = λ2,

1
2F422 = −F114 = F312 = −λ3,

1
2F311 = F214 = F412 = −λ4.

(27)

Having in mind (1), (3) and (27), we compute the components θi = θ(Xi)
and θ∗i = θ∗(Xi) of the Lie forms θ and θ∗, respectively:

θ1 = −θ∗3 = 4λ2, θ2 = −θ∗4 = 4λ1, θ3 = θ∗1 = 4λ4, θ4 = θ∗2 = 4λ3. (28)

A W1-manifold with closed forms θ and θ∗ is called a conformal Kähler
manifold with Norden metric. The subclass of these manifolds is denoted
by W0

1 . Such manifolds are conformally equivalent to Kähler manifolds 1.
We establish that the Lie form θ∗ is closed on (G, J, g). Thus, we have

Proposition 2.1. The manifold (G, J, g) is conformal Kählerian if and
only if the Lie form θ is closed, i.e. if and only if one of the conditions
holds: λ1 = λ4, λ2 = −λ3 or λ1 = −λ4, λ2 = λ3.

Next, by (2), (10) and (27) we get the square norm of ∇J

‖∇J‖2 = 16
(
λ2

1 + λ2
2 − λ2

3 − λ2
4

)
. (29)

Proposition 2.2. The manifold (G, J, g) is isotropic Kählerian if and only
if the condition λ2

1 + λ2
2 − λ2

3 − λ2
4 = 0 holds.

Taking into account (20) and (26), we compute the non-zero components
Rijkl = R(Xi, Xj , Xk, Xl) of the curvature tensor R as follows:

R1221 = λ2
1 + λ2

2, R1331 = λ2
4 − λ2

2, R1441 = λ2
4 − λ2

1,

R2332 = λ2
3 − λ2

2, R2442 = λ2
3 − λ2

1, R3443 = −λ2
3 − λ2

4,

R1341 = R2342 = −λ1λ2, R2132 = −R4134 = −λ1λ3,

R1231 = −R4234 = λ1λ4, R2142 = −R3143 = λ2λ3,

R1241 = −R3243 = −λ2λ4, R3123 = R4124 = λ3λ4.

(30)
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Let us denote ρij = ρ(Xi, Xj). Then, by (1), (5) and (30) we obtain the
components of the Ricci tensor ρ:

ρ11 = 2
(
λ2

1 + λ2
2 − λ2

4

)
, ρ12 = −2λ3λ4, ρ23 = 2λ1λ4,

ρ22 = 2
(
λ2

1 + λ2
2 − λ2

3

)
, ρ13 = −2λ1λ3, ρ24 = −2λ2λ4,

ρ33 = 2
(
λ2

4 + λ2
3 − λ2

2

)
, ρ14 = 2λ2λ3, ρ34 = −2λ1λ2,

ρ44 = 2
(
λ2

4 + λ2
3 − λ2

1

)
.

(31)

By (26) and (31) we get
(
∇Xi

ρ
)
(Xj , Xk) = 0 for all i, j, k = 1, 2, 3, 4.

Proposition 2.3. The manifold (G, J, g) is Ricci-symmetric.

Next, by (1), (5) and (31) we obtain the the scalar curvatures as:

τ = 6
(
λ2

1 + λ2
2 − λ2

3 − λ2
4

)
,

∗
τ = −4

(
λ1λ3 + λ2λ4

)
. (32)

Then, (32), Propositions 2.1 and 2.2 imply

Proposition 2.4. The considered manifold (G, J, g) has the properties:

(i) (G, J, g) is isotropic Kählerian if and only if τ = 0;
(ii) (G, J, g) is conformal Kählerian if and only if τ =

∗
τ = 0.

Let us consider the Weyl tensor of (G, J, g). Taking into account (6),
(7), (30), (31) and (32), we get Wijkl = 0 for all i, j, k, l = 1, 2, 3, 4.

Proposition 2.5. The Weyl tensor of (G, J, g) vanishes. Thus, the curva-
ture tensor has the form R = 1

2

{
ψ1(ρ)− τ

3π1

}
.

By Propositions 2.4 and 2.5 we obtain

Proposition 2.6. If (G, J, g) is a conformal Kähler manifold, then its cur-
vature tensor has the form R = 1

2ψ1(ρ).

Further, (7), ∇g = 0, Propositions 2.3 and 2.5 imply

Proposition 2.7. The manifold (G, J, g) is locally symmetric, i.e. ∇R = 0.

Let us consider the characteristic two-planes αij spanned by the basic
vectors {Xi, Xj} at an arbitrary point of the manifold: totally real two-
planes: α12, α14, α23, α34 and holomorphic two-planes: α13, α24.

Then, by (7), (8), (20) and (30) we obtain

ν(α12) = λ2
1 + λ2

2, ν(α13) = λ2
2 − λ2

4, ν(α14) = λ2
1 − λ2

4,

ν(α23) = λ2
2 − λ2

3, ν(α24) = λ2
1 − λ2

3, ν(α34) = −λ2
3 − λ2

4.
(33)
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Proposition 2.8. If (G, J, g) is of vanishing holomorphic sectional curva-
tures, then it is isotropic Kählerian.

Finally, Propositions 2.2, 2.4 and 2.5 induce

Theorem 2.1. The following conditions are equivalent:

(i) (G, J, g) is isotropic Kählerian;
(ii) the condition λ2

1 + λ2
2 − λ2

3 − λ2
4 = 0 holds;

(iii) the scalar curvature τ vanishes;
(iv) the curvature tensor has the form R = 1

2ψ1(ρ);
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