On a class complex manifolds with Norden metric

Marta Kostadinova Teofilova

Abstract

A subclass of one of the basic classes complex manifolds with Norden metric is introduced. Some curvature properties of 4-dimensional manifolds belonging to this subclass are studied. A condition this manifolds to be conformally flat is given. An example of such 4-dimensional manifold is constructed on a Lie group. The manifold obtained in this way is proved to be Einstein.

2000 Mathematics Subject Classification: 53C15, 53C50.

 ${\bf Keywords:} \ {\rm complex} \ {\rm manifold}, \ {\rm Norden} \ {\rm metric}, \ {\rm complex} \ {\rm structure}.$

1 Preliminaries

Let (M, J, g) be a 2*n*-dimensional almost complex manifold with Norden metric, i.e. J is an almost complex structure and g is a metric on M such that:

(1.1)
$$J^2X = -X, \qquad g(JX, JY) = -g(X, Y), \qquad X, Y \in \mathfrak{X}(M).$$

The associated metric \tilde{g} of g on M, given by $\tilde{g}(X,Y) = g(X,JY)$, is a Norden metric, too. Both metrics are necessarily of signature (n, n).

Further, X, Y, Z, W (x, y, z, w, respectively) will stand for arbitrary differentiable vector fields on M (vectors in T_pM , $p \in M$, respectively).

Let ∇ be the Levi-Civita connection of the metric g. Then, the tensor field F of type (0,3) on M is defined by $F(X,Y,Z) = g((\nabla_X J)Y,Z)$ and has the following symmetries

(1.2)
$$F(X, Y, Z) = F(X, Z, Y) = F(X, JY, JZ).$$

Let $\{e_i\}$ (i = 1, 2, ..., 2n) be an arbitrary basis of T_pM at a point p of M. The components of the inverse matrix of g are denoted by g^{ij} with respect to the basis $\{e_i\}$. The Lie forms θ and θ^* associated with F are defined by

(1.3)
$$\theta(z) = g^{ij} F(e_i, e_j, z), \qquad \theta^* = \theta \circ J,$$

and the corresponding Lie vector is denoted by Ω , i.e. $\theta(z) = g(z, \Omega)$.

A classification of the almost complex manifolds with Norden metric is introduced in [2], where eight classes of these manifolds are characterized according to the properties of F. The three basic classes are given as follows:

(1.4)

$$\begin{aligned}
\mathcal{W}_{1}: F(X,Y,Z) &= \frac{1}{2n} \left[g(X,Y)\theta(Z) + g(X,Z)\theta(Y) \right. \\ &\quad + g(X,JY)\theta(JZ) + g(X,JZ)\theta(JY) \right]; \\
\mathcal{W}_{2}: F(X,Y,JZ) + F(Y,Z,JX) + F(Z,X,JY) &= 0, \quad \theta = 0; \\
\mathcal{W}_{3}: F(X,Y,Z) + F(Y,Z,X) + F(Z,X,Y) &= 0;
\end{aligned}$$

Let R be the curvature tensor of ∇ , i.e. $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z$ and R(X,Y,Z,W) = g(R(X,Y)Z,W).

A tensor L of type (0,4) is called *curvature-like* if it satisfies the following conditions for any $X, Y, Z, W \in \mathfrak{X}(M)$: L(X, Y, Z, W) = -L(Y, X, Z, W) = -L(X, Y, W, Z), L(X, Y, Z, W) + L(Y, Z, X, W) + L(Z, X, Y, W) = 0.

The Ricci tensor $\rho(L)$ and the scalar curvatures $\tau(L)$ and $\tau^*(L)$ of L are defined by:

(1.5)
$$\rho(L)(y,z) = g^{ij}L(e_i, y, z, e_j), \ \tau(L) = g^{ij}\rho(L)(e_i, e_j), \ \tau^*(L) = g^{ij}\rho(L)(e_i, Je_j).$$

A curvature-like tensor L is said to be a Kählerian if L(X, Y, JZ, JW) = -L(X, Y, Z, W).

Let S be a symmetric tensor of type (0, 2). We consider the following curvature-like tensors of type (0, 4):

(1.6)

$$\begin{aligned} \psi_1(S)(X,Y,Z,W) &= g(Y,Z)S(X,W) - g(X,Z)S(Y,W) \\ &+ g(X,W)S(Y,Z) - g(Y,W)S(X,Z); \\ \pi_2(X,Y,Z,W) &= g(Y,JZ)g(X,JW) - g(X,JZ)g(Y,JW); \\ \pi_3 &= -\psi_1\left(\widetilde{g}\right). \end{aligned}$$

The Weyl tensor W of R is defined as usually by

(1.7)
$$W(R) = R - \frac{1}{2n-2} \left\{ \psi_1(\rho) - \frac{\tau}{2n-1} \pi_1 \right\}.$$

It is known that the Weyl tensor vanishes if and only if the manifold is conformally flat.

Let $\alpha = \{x, y\}$ be a non-degenerate 2-plane spanned by the vectors $x, y \in T_pM$, $p \in M$. The sectional curvatures of α with respect to the curvature-like tensor L are given by

(1.8)
$$\nu(L;p) = \frac{L(x,y,y,x)}{\pi_1(x,y,y,x)}, \qquad \nu^*(L;p) = \frac{L(x,y,y,x)}{\pi_1(x,y,y,x)}.$$

Let us note that the square norm of ∇J is defined by

(1.9)
$$\|\nabla J\|^2 = g^{ij} g^{kl} g\left((\nabla_{e_i} J) e_k, (\nabla_{e_j} J) e_l \right).$$

Definition 1.1. [3] An almost complex manifold with Norden metric satisfying the condition $\|\nabla J\|^2 = 0$ is said to be an *isotropic Kähler manifold with Norden metric*.

2 Curvature properties of 4-dimensional W_1^* -manifolds

Let (M, J, g) be a \mathcal{W}_1 -manifold with closed the Lie form θ^* , i.e. $(\nabla_X \theta) JY = (\nabla_Y \theta) JX$. We denote the class of these manifolds by $W_1^* \subset \mathcal{W}_1$.

In [6] is introduced the tensor R^* by

(2.1)
$$R^* = R - \frac{1}{2n}\psi_1(S), \qquad S(X,Y) = \left(\nabla_X\theta\right)JY + \frac{1}{2n}\theta(X)\theta(Y) + \frac{\theta(\Omega)}{4n}g(X,Y).$$

By the fact that S is symmetric on a \mathcal{W}_1^* -manifold we conclude that R^* is a curvature-like tensor. It is proved [6] that in this case the tensor R^* is Kählerian and $W(R) = W(R^*)$.

In [7] is established the following

Theorem 2.1. [7] Let (M, J, g) be a 4-dimensional almost complex manifold with Norden metric and let L be a Kähler tensor on M. Then L has the following form

(2.2)
$$L = \nu(L)\{\pi_1 - \pi_2\} + \nu^*(L)\pi_3, \quad \nu(L) = \frac{\tau(L)}{8}, \quad \nu^*(L) = \frac{\tau^*(L)}{8}.$$

Then, by (1.7), (2.1) and Theorem 2.1 we obtain

Theorem 2.2. Let (M, J, g) be a 4-dimensional \mathcal{W}_1^* -manifold. Then, the curvature tensor R and the Weyl tensor W(R) have the forms, respectively

(2.3)
$$R = \frac{\tau_*}{8} \left\{ \pi_1 - \pi_2 \right\} - \frac{\tau_*}{12} \pi_1 + \frac{1}{2} \left\{ \psi_1(\rho) - \frac{\tau}{3} \pi_1 \right\}, \quad W(R) = \frac{\tau_*}{24} \left\{ \pi_1 - 3\pi_2 \right\},$$

where $\tau_* = \tau(R^*) = \tau - \frac{3}{2} \left[\operatorname{div}(J\Omega) - \frac{\theta(\Omega)}{4} \right]$ and $\operatorname{div}(J\Omega) = \nabla_i J_k^i \Omega^k$.

By Theorem 2.2 we obtain

Theorem 2.3. The Weyl tensor of a 4-dimensional \mathcal{W}_1^* -manifold vanishes if and only if the condition $\tau = \frac{3}{2} \left[\operatorname{div}(J\Omega) - \frac{\theta(\Omega)}{4} \right]$ holds.

It is known that a 4-dimensional almost complex manifold with Norden metric is called a space form if its curvature tensor has the form $R = \frac{\tau}{12}\pi_1$. Obviously, such manifolds are Einstein, locally symmetric and conformally flat.

Corollary 2.4. If a 4-dimensional W_1^* -manifold is a space form, $\tau = \frac{3}{2} \left[\operatorname{div}(J\Omega) - \frac{\theta(\Omega)}{4} \right].$

It has been proved [7] that on a \mathcal{W}_1 -manifold it is valid

(2.4)
$$\|\nabla J\|^2 = \frac{2}{n}\theta(\Omega).$$

Then, by Theorem 2.2, Definition 1.1 and (2.4) it follows immediately

Corollary 2.5. Let (M, J, g) be a 4-dimensional isotropic Kähler \mathcal{W}_1^* -manifold. Then, its curvature tensor has the form $R = \frac{2\tau - 3\operatorname{div}(J\Omega)}{48} \{\pi_1 - 3\pi_2\} + \frac{1}{2} \{\psi_1(\rho) - \frac{\tau}{3}\pi_1\}.$

3 A Lie group as a 4-dimensional \mathcal{W}_1^* -manifold

Let \mathfrak{g} be a real 4-dimensional Lie algebra corresponding to a real connected Lie group G. If $\{X_1, X_2, X_3, X_4\}$ is a global basis of left invariant vector fields on G and $[X_i, X_j] = C_{ij}^k X_k$, then the Jacobi identity for C_{ij}^k holds:

(3.1)
$$C_{ij}^k C_{ks}^l + C_{js}^k C_{ki}^l + C_{si}^k C_{kj}^l = 0.$$

We define an almost complex structure on G by the conditions:

$$(3.2) JX_1 = X_3, JX_2 = X_4, JX_3 = -X_1, JX_4 = -X_2.$$

Let us consider the left-invariant metric given by

(3.3)
$$g(X_1, X_1) = g(X_2, X_2) = -g(X_3, X_3) = -g(X_4, X_4) = 1, g(X_i, X_j) = 0 \text{ for } i \neq j.$$

The introduced metric Norden because of (3.2). In this way, the induced 4-dimensional manifold (G, J, g) is an almost complex manifold with Norden metric.

Further, from the well-known equality

(3.4)
$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(X, Z) - Zg(X, Y) +g([X, Y], Z) + g([Z, X], Y) + g([Z, Y], X)$$

we obtain

(3.5)
$$2F(X_i, X_j, X_k) = g([X_i, JX_j] - J[X_i, X_j], X_k) +g([X_k, JX_i] - [JX_k, X_i], X_j) + g(J[X_k, X_j] - [JX_k, X_j], X_i).$$

Let (G, J, g) be a W_1 -manifold. Then, by (1.2), (1.3), (1.4), (3.5) we prove

Proposition 3.1. If (G, J, g) is a 4-dimensional W_1 -manifold, the Lie algebra \mathfrak{g} of G is given by the conditions:

$$(3.6) \begin{array}{l} C_{13}^{1} = C_{23}^{2} - C_{12}^{4} = C_{14}^{2} - C_{34}^{4}, \qquad C_{24}^{1} = -(C_{12}^{4} + C_{14}^{2}) = -(C_{23}^{2} + C_{34}^{4}), \\ C_{13}^{2} = C_{12}^{3} - C_{23}^{1} = C_{34}^{3} - C_{14}^{1}, \qquad C_{24}^{2} = C_{12}^{3} + C_{14}^{1} = C_{23}^{1} + C_{34}^{3}, \\ C_{13}^{3} = C_{12}^{2} + C_{23}^{4} = C_{14}^{4} + C_{34}^{2}, \qquad C_{24}^{3} = C_{34}^{2} - C_{23}^{4} = C_{12}^{2} - C_{14}^{1}, \\ C_{13}^{4} = -(C_{14}^{3} + C_{34}^{1}) = -(C_{12}^{1} + C_{23}^{2}), \qquad C_{24}^{4} = C_{14}^{3} - C_{12}^{1} = C_{33}^{3} - C_{14}^{1}, \end{array}$$

where $C_{ij}^k \in \mathbb{R}$ (i, j, k = 1, 2, 3, 4) satisfy the Jacobi identity (3.1).

One solution to (3.1) and (3.6) is the 4-parametric family of Lie algebras \mathfrak{g} given by

(3.7)
$$\begin{aligned} & [X_1, X_2] = \lambda_1 X_1 + \lambda_2 X_2, & [X_2, X_3] = \lambda_4 X_2 - \lambda_1 X_3, \\ & [X_1, X_3] = \lambda_4 X_1 + \lambda_2 X_3, & [X_2, X_4] = \lambda_3 X_2 - \lambda_1 X_4, \\ & [X_1, X_4] = \lambda_3 X_1 + \lambda_2 X_4, & [X_3, X_4] = \lambda_3 X_3 - \lambda_4 X_4, \end{aligned}$$

where $\lambda_i \in \mathbb{R}$ (i = 1, 2, 3, 4). Thus, the equality (3.7) defines a 4-parametric family of 4-dimensional \mathcal{W}_1 -manifolds.

If we put in (3.7) one of the parameters λ_i equal to one and the rest three equal to zero, we obtain the Lie algebra corresponding to the Lie group given as an example of a W_1 -manifold (in the case of dimension four) by R. Castro and L. M. Hervella [1].

It is well-known that a Lie algebra \mathfrak{g} is *solvable* if its derived series

$$\mathfrak{D}^0\mathfrak{g}=\mathfrak{g},\,\mathfrak{D}^1\mathfrak{g}=[\mathfrak{g},\mathfrak{g}],\ldots,\,\,\mathfrak{D}^{k+1}\mathfrak{g}=[\mathfrak{D}^k\mathfrak{g},\mathfrak{D}^k\mathfrak{g}],\ldots$$

vanishes for some $k \in \mathbb{N}$. Then, having in mind (3.7), it is easy to check that $\mathfrak{D}^2\mathfrak{g} = \{0\}$ and thus the Lie algebras (3.7) are solvable.

Let us remark that the Killing form [4] B(X, Y) = tr(adXadY) of the Lie algebras (3.7) is degenerate, i.e. det B = 0. Hence, it cannot be a Norden metric.

By (3.3), (3.4) and (3.7) we get the essential components of the Levi-Civita connection of the manifold (G, J, g) as follows:

$$\begin{array}{ll} (3.8) & \nabla_{X_1} X_1 = -\lambda_1 X_2 + \lambda_4 X_3 + \lambda_3 X_4, & \nabla_{X_1} X_2 = \lambda_1 X_1, & \nabla_{X_2} X_3 = \lambda_4 X_2, \\ & \nabla_{X_2} X_2 = \lambda_2 X_1 + \lambda_4 X_3 + \lambda_3 X_4, & \nabla_{X_1} X_3 = \lambda_4 X_1, & \nabla_{X_2} X_4 = \lambda_3 X_2, \\ & \nabla_{X_3} X_3 = -\lambda_2 X_1 + \lambda_1 X_2 - \lambda_3 X_4, & \nabla_{X_1} X_4 = \lambda_3 X_1, & \nabla_{X_3} X_4 = \lambda_3 X_3. \\ & \nabla_{X_4} X_4 = -\lambda_2 X_1 + \lambda_1 X_2 - \lambda_4 X_3, & \end{array}$$

Next, by (3.2), (3.3) and (3.5) we compute the essential non-zero components $F_{ijk} = F(X_i, X_j, X_k)$ of the tensor F as follows:

(3.9)
$$\begin{array}{c} -F_{114} = F_{312} = \frac{1}{2}F_{444} = \lambda_1, \qquad F_{214} = F_{412} = \frac{1}{2}F_{333} = -\lambda_2, \\ F_{112} = F_{314} = \frac{1}{2}F_{222} = \lambda_3, \qquad F_{212} = -F_{414} = \frac{1}{2}F_{111} = \lambda_4. \end{array}$$

Having in mind (1.1), (1.3) and (3.9), we get the components $\theta_i = \theta(X_i)$ and $\theta_i^* = \theta^*(X_i)$ of the Lie forms θ and θ^* , respectively:

(3.10)
$$\begin{aligned} \theta_1 &= -\theta_3^* = 4\lambda_4, \quad \theta_2 = -\theta_4^* = 4\lambda_3, \quad \theta_3 = \theta_1^* = 4\lambda_2, \quad \theta_4 = \theta_2^* = -4\lambda_1, \\ \theta(\Omega) &= \frac{4}{3} \operatorname{div}(J\Omega) = -16(\lambda_1^2 + \lambda_2^2 - \lambda_3^2 - \lambda_4^2). \end{aligned}$$

Then, by (3.8) and (3.10) we get $(\nabla_{X_i}\theta^*)X_j = (\nabla_{X_j}\theta^*)X_i$, i, j = 1, 2, 3, 4. Hence the Lie form θ^* is closed and therefore we have

Proposition 3.2. Let (G, J, g) be the 4-dimensional W_1 -manifold constructed by (3.2) and (3.3), and let \mathfrak{g} be the Lie algebra of G defined by (3.7). Then $(G, J, g) \in W_1^*$.

By (2.4) and (3.10) we obtain the square norm of ∇J

(3.11)
$$\|\nabla J\|^2 = -16(\lambda_1^2 + \lambda_2^2 - \lambda_3^2 - \lambda_4^2).$$

Then, having in mind Definition 1.1 and (3.11), we get

Proposition 3.3. The manifold (G, J, g) is isotropic Kählerian if and only if the condition $\lambda_1^2 + \lambda_2^2 - \lambda_3^2 - \lambda_4^2 = 0$ holds.

By (3.3) and (3.8) we compute the non-zero components $R_{ijkl} = R(X_i, X_j, X_k, X_l)$ of the curvature tensor R as follows:

$$(3.12) -R_{1221} = R_{1331} = R_{1441} = R_{2332} = R_{2442} = -R_{3443} = \lambda_1^2 + \lambda_2^2 - \lambda_3^2 - \lambda_4^2.$$

Let us consider the characteristic 2-planes α_{ij} spanned by the basic vectors $\{X_i, X_j\}$. By (1.6), (1.8), (3.3) and (3.12) we get the corresponding sectional curvatures as

$$(3.13) \ \nu(\alpha_{12}) = \nu(\alpha_{13}) = \nu(\alpha_{14}) = \nu(\alpha_{23}) = \nu(\alpha_{24}) = \nu(\alpha_{34}) = -(\lambda_1^2 + \lambda_2^2 - \lambda_3^2 - \lambda_4^2).$$

Then, according to the well-known Shur's Theorem [5], from (3.13) it follows

Proposition 3.4. The curvature tensor of (G, J, g) has the form $R = \frac{\tau}{12}\pi_1$. Thus the manifold is Einstein.

By (1.1), (1.5) and (3.10) we obtain the values of the scalar curvatures of the manifold $\tau = -12(\lambda_1^2 + \lambda_2^2 - \lambda_3^2 - \lambda_4^2)$ and $\tau^* = 0$.

Finally, Proposition 3.3 and (3.12) give rise to

Proposition 3.5. The manifold (G, J, g) is isotropic Kählerian if and only if it is flat.

References

- R. CASTRO, L. M. HERVELLA, E. GARCÍA-RÍO, Some examples of almost complex manifolds with Norden metric. Riv. Math. Univ. Parma 15(4) (1989), 133–141.
- [2] G. GANCHEV, A. BORISOV, Note on the almost complex manifolds with a Norden metric. Compt. Rend. Acad. Bulg. Sci. 39(5) (1986), 31–34.
- [3] K. GRIBACHEV, M. MANEV, D. MEKEROV, A Lie group as a 4-dimensional Quasi-Kähler manifold with Norden metric. JP J. Geom. Topol. 6(1) (2005), 55–68.
- [4] S. HELGASON, Differential geometry, Lie groups and symmetric spaces. Pure and Applied Math. 80, Academic Press, 1978.
- [5] S. KOBAYSHI, K. NOMIZU, Foundations of differential geometry vol. I, II, Intersc. Publ., New York, 1963, 1969.
- [6] M. TEOFILOVA, Complex connections on complex manifolds with Norden metric. Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics, World Sci. Publ., Singapore (2005), 326–335.
- [7] M. TEOFILOVA, Curvature properties of conformal Kähler manifolds with Norden metric. Math. Educ. Math., Proc. of 35th Spring Conference of UBM, Borovec (2006), 214–219.

M. Teofilova

Faculty of Mathematics and Informatics, University of Plovdiv, 236 Bulgaria Blvd., Plovdiv 4003, Bulgaria. e-mail: mar@gbg.bg