On a class complex manifolds with Norden metric

Marta Kostadinova Teofilova

Abstract

A subclass of one of the basic classes complex manifolds with Norden metric is introduced. Some curvature properties of 4 -dimensional manifolds belonging to this subclass are studied. A condition this manifolds to be conformally flat is given. An example of such 4-dimensional manifold is constructed on a Lie group. The manifold obtained in this way is proved to be Einstein.

2000 Mathematics Subject Classification: 53C15, 53C50. Keywords: complex manifold, Norden metric, complex structure.

1 Preliminaries

Let (M, J, g) be a $2 n$-dimensional almost complex manifold with Norden metric, i.e. J is an almost complex structure and g is a metric on M such that:

$$
\begin{equation*}
J^{2} X=-X, \quad g(J X, J Y)=-g(X, Y), \quad X, Y \in \mathfrak{X}(M) \tag{1.1}
\end{equation*}
$$

The associated metric \widetilde{g} of g on M, given by $\widetilde{g}(X, Y)=g(X, J Y)$, is a Norden metric, too. Both metrics are necessarily of signature (n, n).

Further, $X, Y, Z, W(x, y, z, w$, respectively) will stand for arbitrary differentiable vector fields on M (vectors in $T_{p} M, p \in M$, respectively).

Let ∇ be the Levi-Civita connection of the metric g. Then, the tensor field F of type $(0,3)$ on M is defined by $F(X, Y, Z)=g\left(\left(\nabla_{X} J\right) Y, Z\right)$ and has the following symmetries

$$
\begin{equation*}
F(X, Y, Z)=F(X, Z, Y)=F(X, J Y, J Z) . \tag{1.2}
\end{equation*}
$$

Let $\left\{e_{i}\right\} \quad(i=1,2, \ldots, 2 n)$ be an arbitrary basis of $T_{p} M$ at a point p of M. The components of the inverse matrix of g are denoted by $g^{i j}$ with respect to the basis $\left\{e_{i}\right\}$.

The Lie forms θ and θ^{*} associated with F are defined by

$$
\begin{equation*}
\theta(z)=g^{i j} F\left(e_{i}, e_{j}, z\right), \quad \theta^{*}=\theta \circ J, \tag{1.3}
\end{equation*}
$$

and the corresponding Lie vector is denoted by Ω, i.e. $\theta(z)=g(z, \Omega)$.
A classification of the almost complex manifolds with Norden metric is introduced in [2], where eight classes of these manifolds are characterized according to the properties of F. The three basic classes are given as follows:

$$
\begin{align*}
& \mathcal{W}_{1}: F(X, Y, Z)=\frac{1}{2 n} {[g(X, Y) \theta(Z)+g(X, Z) \theta(Y)} \\
&+g(X, J Y) \theta(J Z)+g(X, J Z) \theta(J Y)] ; \\
& \mathcal{W}_{2}: F(X, Y, J Z)+ F(Y, Z, J X)+F(Z, X, J Y)=0, \quad \theta=0 ; \tag{1.4}\\
& \mathcal{W}_{3}: F(X, Y, Z)+F(Y, Z, X)+F(Z, X, Y)=0 ;
\end{align*}
$$

Let R be the curvature tensor of ∇, i.e. $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$ and $R(X, Y, Z, W)=g(R(X, Y) Z, W)$.

A tensor L of type $(0,4)$ is called curvature-like if it satisfies the following conditions for any $X, Y, Z, W \in \mathfrak{X}(M): L(X, Y, Z, W)=-L(Y, X, Z, W)=-L(X, Y, W, Z)$, $L(X, Y, Z, W)+L(Y, Z, X, W)+L(Z, X, Y, W)=0$.

The Ricci tensor $\rho(L)$ and the scalar curvatures $\tau(L)$ and $\tau^{*}(L)$ of L are defined by:

$$
\begin{equation*}
\rho(L)(y, z)=g^{i j} L\left(e_{i}, y, z, e_{j}\right), \tau(L)=g^{i j} \rho(L)\left(e_{i}, e_{j}\right), \tau^{*}(L)=g^{i j} \rho(L)\left(e_{i}, J e_{j}\right) . \tag{1.5}
\end{equation*}
$$

A curvature-like tensor L is said to be a Kählerian if $L(X, Y, J Z, J W)=-L(X, Y, Z, W)$.
Let S be a symmetric tensor of type $(0,2)$. We consider the following curvature-like tensors of type $(0,4)$:

$$
\begin{array}{rlrl}
\psi_{1}(S)(X, Y, Z, W)=g(Y, Z) S(X, W)-g(X, Z) S(Y, W) & & \\
& +g(X, W) S(Y, Z)-g(Y, W) S(X, Z) ; & & \pi_{1}=\frac{1}{2} \psi_{1}(g) ; \\
\pi_{2}(X, Y, Z, W)=g(Y, J Z) g(X, J W)-g(X, J Z) g(Y, J W) ; & & \pi_{3}=-\psi_{1}(\widetilde{g}) .
\end{array}
$$

The Weyl tensor W of R is defined as usually by

$$
\begin{equation*}
W(R)=R-\frac{1}{2 n-2}\left\{\psi_{1}(\rho)-\frac{\tau}{2 n-1} \pi_{1}\right\} . \tag{1.7}
\end{equation*}
$$

It is known that the Weyl tensor vanishes if and only if the manifold is conformally flat.
Let $\alpha=\{x, y\}$ be a non-degenerate 2-plane spanned by the vectors $x, y \in T_{p} M$, $p \in M$. The sectional curvatures of α with respect to the curvature-like tensor L are given by

$$
\begin{equation*}
\nu(L ; p)=\frac{L(x, y, y, x)}{\pi_{1}(x, y, y, x)}, \quad \nu^{*}(L ; p)=\frac{L(x, y, y, x)}{\pi_{1}(x, y, y, x)} . \tag{1.8}
\end{equation*}
$$

Let us note that the square norm of ∇J is defined by

$$
\begin{equation*}
\|\nabla J\|^{2}=g^{i j} g^{k l} g\left(\left(\nabla_{e_{i}} J\right) e_{k},\left(\nabla_{e_{j}} J\right) e_{l}\right) . \tag{1.9}
\end{equation*}
$$

Definition 1.1. [3] An almost complex manifold with Norden metric satisfying the condition $\|\nabla J\|^{2}=0$ is said to be an isotropic Kähler manifold with Norden metric.

2 Curvature properties of 4-dimensional \mathcal{W}_{1}^{*}-manifolds

Let (M, J, g) be a \mathcal{W}_{1}-manifold with closed the Lie form θ^{*}, i.e. $\left(\nabla_{X} \theta\right) J Y=\left(\nabla_{Y} \theta\right) J X$. We denote the class of these manifolds by $W_{1}^{*} \subset \mathcal{W}_{1}$.

In [6] is introduced the tensor R^{*} by

$$
\begin{equation*}
R^{*}=R-\frac{1}{2 n} \psi_{1}(S), \quad S(X, Y)=\left(\nabla_{X} \theta\right) J Y+\frac{1}{2 n} \theta(X) \theta(Y)+\frac{\theta(\Omega)}{4 n} g(X, Y) \tag{2.1}
\end{equation*}
$$

By the fact that S is symmetric on a \mathcal{W}_{1}^{*}-manifold we conclude that R^{*} is a curvature-like tensor. It is proved [6] that in this case the tensor R^{*} is Kählerian and $W(R)=W\left(R^{*}\right)$.

In [7] is established the following

Theorem 2.1. [7] Let (M, J, g) be a 4-dimensional almost complex manifold with Norden metric and let L be a Kähler tensor on M. Then L has the following form

$$
\begin{equation*}
L=\nu(L)\left\{\pi_{1}-\pi_{2}\right\}+\nu^{*}(L) \pi_{3}, \quad \nu(L)=\frac{\tau(L)}{8}, \quad \nu^{*}(L)=\frac{\tau^{*}(L)}{8} . \tag{2.2}
\end{equation*}
$$

Then, by (1.7), (2.1) and Theorem 2.1 we obtain
Theorem 2.2. Let (M, J, g) be a 4-dimensional \mathcal{W}_{1}^{*}-manifold. Then, the curvature tensor R and the Weyl tensor $W(R)$ have the forms, respectively

$$
\begin{equation*}
R=\frac{\tau_{*}}{8}\left\{\pi_{1}-\pi_{2}\right\}-\frac{\tau_{*}}{12} \pi_{1}+\frac{1}{2}\left\{\psi_{1}(\rho)-\frac{\tau}{3} \pi_{1}\right\}, \quad W(R)=\frac{\tau_{*}}{24}\left\{\pi_{1}-3 \pi_{2}\right\} \tag{2.3}
\end{equation*}
$$

where $\tau_{*}=\tau\left(R^{*}\right)=\tau-\frac{3}{2}\left[\operatorname{div}(J \Omega)-\frac{\theta(\Omega)}{4}\right]$ and $\operatorname{div}(J \Omega)=\nabla_{i} J_{k}^{i} \Omega^{k}$.
By Theorem 2.2 we obtain
Theorem 2.3. The Weyl tensor of a 4-dimensional \mathcal{W}_{1}^{*}-manifold vanishes if and only if the condition $\tau=\frac{3}{2}\left[\operatorname{div}(J \Omega)-\frac{\theta(\Omega)}{4}\right]$ holds.

It is known that a 4-dimensional almost complex manifold with Norden metric is called a space form if its curvature tensor has the form $R=\frac{\tau}{12} \pi_{1}$. Obviously, such manifolds are Einstein, locally symmetric and conformally flat.

Corollary 2.4. If a 4 -dimensional \mathcal{W}_{1}^{*}-manifold is a space form, $\tau=\frac{3}{2}\left[\operatorname{div}(J \Omega)-\frac{\theta(\Omega)}{4}\right]$.
It has been proved [7] that on a \mathcal{W}_{1}-manifold it is valid

$$
\begin{equation*}
\|\nabla J\|^{2}=\frac{2}{n} \theta(\Omega) \tag{2.4}
\end{equation*}
$$

Then, by Theorem 2.2, Definition 1.1 and (2.4) it follows immediately
Corollary 2.5. Let (M, J, g) be a 4-dimensional isotropic Kähler \mathcal{W}_{1}^{*}-manifold. Then, its curvature tensor has the form $R=\frac{2 \tau-3 \operatorname{div}(J \Omega)}{48}\left\{\pi_{1}-3 \pi_{2}\right\}+\frac{1}{2}\left\{\psi_{1}(\rho)-\frac{\tau}{3} \pi_{1}\right\}$.

3 A Lie group as a 4-dimensional \mathcal{W}_{1}^{*}-manifold

Let \mathfrak{g} be a real 4-dimensional Lie algebra corresponding to a real connected Lie group G. If $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ is a global basis of left invariant vector fields on G and $\left[X_{i}, X_{j}\right]=$ $C_{i j}^{k} X_{k}$, then the Jacobi identity for $C_{i j}^{k}$ holds:

$$
\begin{equation*}
C_{i j}^{k} C_{k s}^{l}+C_{j s}^{k} C_{k i}^{l}+C_{s i}^{k} C_{k j}^{l}=0 \tag{3.1}
\end{equation*}
$$

We define an almost complex structure on G by the conditions:

$$
\begin{equation*}
J X_{1}=X_{3}, \quad J X_{2}=X_{4}, \quad J X_{3}=-X_{1}, \quad J X_{4}=-X_{2} \tag{3.2}
\end{equation*}
$$

Let us consider the left-invariant metric given by

$$
\begin{align*}
& g\left(X_{1}, X_{1}\right)=g\left(X_{2}, X_{2}\right)=-g\left(X_{3}, X_{3}\right)=-g\left(X_{4}, X_{4}\right)=1, \tag{3.3}\\
& g\left(X_{i}, X_{j}\right)=0 \text { for } i \neq j .
\end{align*}
$$

The introduced metric Norden because of (3.2). In this way, the induced 4-dimensional manifold (G, J, g) is an almost complex manifold with Norden metric.

Further, from the well-known equality

$$
\begin{align*}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(X, Z)-Z g(X, Y) \tag{3.4}\\
& +g([X, Y], Z)+g([Z, X], Y)+g([Z, Y], X)
\end{align*}
$$

we obtain

$$
\begin{align*}
& 2 F\left(X_{i}, X_{j}, X_{k}\right)=g\left(\left[X_{i}, J X_{j}\right]-J\left[X_{i}, X_{j}\right], X_{k}\right) \\
& +g\left(\left[X_{k}, J X_{i}\right]-\left[J X_{k}, X_{i}\right], X_{j}\right)+g\left(J\left[X_{k}, X_{j}\right]-\left[J X_{k}, X_{j}\right], X_{i}\right) . \tag{3.5}
\end{align*}
$$

Let (G, J, g) be a \mathcal{W}_{1}-manifold. Then, by (1.2), (1.3), (1.4), (3.5) we prove
Proposition 3.1. If (G, J, g) is a 4-dimensional \mathcal{W}_{1}-manifold, the Lie algebra \mathfrak{g} of G is given by the conditions:

$$
\begin{array}{lr}
C_{13}^{1}=C_{23}^{2}-C_{12}^{4}=C_{14}^{2}-C_{34}^{4}, & C_{24}^{1}=-\left(C_{12}^{4}+C_{14}^{2}\right)=-\left(C_{23}^{2}+C_{34}^{4}\right), \\
C_{13}^{2}=C_{12}^{3}-C_{23}^{1}=C_{34}^{3}-C_{14}^{1}, & C_{24}^{2}=C_{12}^{3}+C_{14}^{1}=C_{23}^{1}+C_{34}^{3}, \tag{3.6}\\
C_{13}^{3}=C_{12}^{2}+C_{23}^{4}=C_{14}^{4}+C_{34}^{2}, & C_{24}^{3}=C_{34}^{2}-C_{23}^{4}=C_{12}^{2}-C_{14}^{1}, \\
C_{13}^{4}=-\left(C_{14}^{3}+C_{34}^{1}\right)=-\left(C_{12}^{1}+C_{23}^{2}\right), & C_{24}^{4}=C_{14}^{3}-C_{12}^{1}=C_{23}^{3}-C_{34}^{1},
\end{array}
$$

where $C_{i j}^{k} \in \mathbb{R}(i, j, k=1,2,3,4)$ satisfy the Jacobi identity (3.1).
One solution to (3.1) and (3.6) is the 4-parametric family of Lie algebras \mathfrak{g} given by

$$
\begin{array}{ll}
{\left[X_{1}, X_{2}\right]=\lambda_{1} X_{1}+\lambda_{2} X_{2},} & {\left[X_{2}, X_{3}\right]=\lambda_{4} X_{2}-\lambda_{1} X_{3},} \\
{\left[X_{1}, X_{3}\right]=\lambda_{4} X_{1}+\lambda_{2} X_{3},} & {\left[X_{2}, X_{4}\right]=\lambda_{3} X_{2}-\lambda_{1} X_{4},} \tag{3.7}\\
{\left[X_{1}, X_{4}\right]=\lambda_{3} X_{1}+\lambda_{2} X_{4},} & {\left[X_{3}, X_{4}\right]=\lambda_{3} X_{3}-\lambda_{4} X_{4},}
\end{array}
$$

where $\lambda_{i} \in \mathbb{R}(i=1,2,3,4)$. Thus, the equality (3.7) defines a 4 -parametric family of 4 -dimensional \mathcal{W}_{1}-manifolds.

If we put in (3.7) one of the parameters λ_{i} equal to one and the rest three equal to zero, we obtain the Lie algebra corresponding to the Lie group given as an example of a \mathcal{W}_{1}-manifold (in the case of dimension four) by R. Castro and L. M. Hervella [1].

It is well-known that a Lie algebra \mathfrak{g} is solvable if its derived series

$$
\mathfrak{D}^{0} \mathfrak{g}=\mathfrak{g}, \mathfrak{D}^{1} \mathfrak{g}=[\mathfrak{g}, \mathfrak{g}], \ldots, \mathfrak{D}^{k+1} \mathfrak{g}=\left[\mathfrak{D}^{k} \mathfrak{g}, \mathfrak{D}^{k} \mathfrak{g}\right], \ldots
$$

vanishes for some $k \in \mathbb{N}$. Then, having in mind (3.7), it is easy to check that $\mathfrak{D}^{2} \mathfrak{g}=\{0\}$ and thus the Lie algebras (3.7) are solvable.

Let us remark that the Killing form [4] $B(X, Y)=\operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y)$ of the Lie algebras (3.7) is degenerate, i.e. $\operatorname{det} B=0$. Hence, it cannot be a Norden metric.

By (3.3), (3.4) and (3.7) we get the essential components of the Levi-Civita connection of the manifold (G, J, g) as follows:

$$
\begin{array}{lll}
\nabla_{X_{1}} X_{1}=-\lambda_{1} X_{2}+\lambda_{4} X_{3}+\lambda_{3} X_{4}, & \nabla_{X_{1}} X_{2}=\lambda_{1} X_{1}, & \nabla_{X_{2}} X_{3}=\lambda_{4} X_{2} \\
\nabla_{X_{2}} X_{2}=\lambda_{2} X_{1}+\lambda_{4} X_{3}+\lambda_{3} X_{4}, & \nabla_{X_{1}} X_{3}=\lambda_{4} X_{1}, & \nabla_{X_{2}} X_{4}=\lambda_{3} X_{2} \tag{3.8}\\
\nabla_{X_{3}} X_{3}=-\lambda_{2} X_{1}+\lambda_{1} X_{2}-\lambda_{3} X_{4}, & \nabla_{X_{1}} X_{4}=\lambda_{3} X_{1}, & \nabla_{X_{3}} X_{4}=\lambda_{3} X_{3} \\
\nabla_{X_{4}} X_{4}=-\lambda_{2} X_{1}+\lambda_{1} X_{2}-\lambda_{4} X_{3}, &
\end{array}
$$

Next, by (3.2), (3.3) and (3.5) we compute the essential non-zero components $F_{i j k}=$ $F\left(X_{i}, X_{j}, X_{k}\right)$ of the tensor F as follows:

$$
\begin{align*}
-F_{114} & =F_{312}=\frac{1}{2} F_{444}=\lambda_{1}, & & F_{214}=F_{412}=\frac{1}{2} F_{333}=-\lambda_{2} \\
F_{112} & =F_{314}=\frac{1}{2} F_{222}=\lambda_{3}, & & F_{212}=-F_{414}=\frac{1}{2} F_{111}=\lambda_{4} \tag{3.9}
\end{align*}
$$

Having in mind (1.1), (1.3) and (3.9), we get the components $\theta_{i}=\theta\left(X_{i}\right)$ and $\theta_{i}^{*}=\theta^{*}\left(X_{i}\right)$ of the Lie forms θ and θ^{*}, respectively:

$$
\begin{align*}
& \theta_{1}=-\theta_{3}^{*}=4 \lambda_{4}, \quad \theta_{2}=-\theta_{4}^{*}=4 \lambda_{3}, \quad \theta_{3}=\theta_{1}^{*}=4 \lambda_{2}, \quad \theta_{4}=\theta_{2}^{*}=-4 \lambda_{1} \\
& \theta(\Omega)=\frac{4}{3} \operatorname{div}(J \Omega)=-16\left(\lambda_{1}^{2}+\lambda_{2}^{2}-\lambda_{3}^{2}-\lambda_{4}^{2}\right) \tag{3.10}
\end{align*}
$$

Then, by (3.8) and (3.10) we get $\left(\nabla_{X_{i}} \theta^{*}\right) X_{j}=\left(\nabla_{X_{j}} \theta^{*}\right) X_{i}, i, j=1,2,3,4$. Hence the Lie form θ^{*} is closed and therefore we have
Proposition 3.2. Let (G, J, g) be the 4-dimensional \mathcal{W}_{1}-manifold constructed by (3.2) and (3.3), and let \mathfrak{g} be the Lie algebra of G defined by (3.7). Then $(G, J, g) \in \mathcal{W}_{1}^{*}$.

By (2.4) and (3.10) we obtain the square norm of ∇J

$$
\begin{equation*}
\|\nabla J\|^{2}=-16\left(\lambda_{1}^{2}+\lambda_{2}^{2}-\lambda_{3}^{2}-\lambda_{4}^{2}\right) \tag{3.11}
\end{equation*}
$$

Then, having in mind Definition 1.1 and (3.11), we get
Proposition 3.3. The manifold (G, J, g) is isotropic Kählerian if and only if the condition $\lambda_{1}^{2}+\lambda_{2}^{2}-\lambda_{3}^{2}-\lambda_{4}^{2}=0$ holds.

By (3.3) and (3.8) we compute the non-zero components $R_{i j k l}=R\left(X_{i}, X_{j}, X_{k}, X_{l}\right)$ of the curvature tensor R as follows:

$$
\begin{equation*}
-R_{1221}=R_{1331}=R_{1441}=R_{2332}=R_{2442}=-R_{3443}=\lambda_{1}^{2}+\lambda_{2}^{2}-\lambda_{3}^{2}-\lambda_{4}^{2} \tag{3.12}
\end{equation*}
$$

Let us consider the characteristic 2-planes $\alpha_{i j}$ spanned by the basic vectors $\left\{X_{i}, X_{j}\right\}$. By (1.6), (1.8), (3.3) and (3.12) we get the corresponding sectional curvatures as (3.13) $\nu\left(\alpha_{12}\right)=\nu\left(\alpha_{13}\right)=\nu\left(\alpha_{14}\right)=\nu\left(\alpha_{23}\right)=\nu\left(\alpha_{24}\right)=\nu\left(\alpha_{34}\right)=-\left(\lambda_{1}^{2}+\lambda_{2}^{2}-\lambda_{3}^{2}-\lambda_{4}^{2}\right)$.

Then, according to the well-known Shur's Theorem [5], from (3.13) it follows
Proposition 3.4. The curvature tensor of (G, J, g) has the form $R=\frac{\tau}{12} \pi_{1}$. Thus the manifold is Einstein.

By (1.1), (1.5) and (3.10) we obtain the values of the scalar curvatures of the manifold $\tau=-12\left(\lambda_{1}^{2}+\lambda_{2}^{2}-\lambda_{3}^{2}-\lambda_{4}^{2}\right)$ and $\tau^{*}=0$.

Finally, Proposition 3.3 and (3.12) give rise to
Proposition 3.5. The manifold (G, J, g) is isotropic Kählerian if and only if it is flat.

References

[1] R. Castro, L. M. Hervella, E. García-Río, Some examples of almost complex manifolds with Norden metric. Riv. Math. Univ. Parma 15(4) (1989), 133-141.
[2] G. Ganchev, A. Borisov, Note on the almost complex manifolds with a Norden metric. Compt. Rend. Acad. Bulg. Sci. 39(5) (1986), 31-34.
[3] K. Gribachev, M. Manev, D. Mekerov, A Lie group as a 4-dimensional QuasiKähler manifold with Norden metric. JP J. Geom. Topol. 6(1) (2005), 55-68.
[4] S. Helgason, Differential geometry, Lie groups and symmetric spaces. Pure and Applied Math. 80, Academic Press, 1978.
[5] S. Kobayshi, K. Nomizu, Foundations of differential geometry vol. I, II, Intersc. Publ., New York, 1963, 1969.
[6] M. Teofilova, Complex connections on complex manifolds with Norden metric. Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics, World Sci. Publ., Singapore (2005), 326-335.
[7] M. Teofilova, Curvature properties of conformal Kähler manifolds with Norden metric. Math. Educ. Math., Proc. of $35^{\text {th }}$ Spring Conference of UBM, Borovec (2006), 214-219.

M. Teofilova

Faculty of Mathematics and Informatics, University of Plovdiv, 236 Bulgaria Blvd., Plovdiv 4003, Bulgaria. e-mail: mar@gbg.bg

