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Abstract
A subclass of one of the basic classes complex manifolds with Norden metric

is introduced. Some curvature properties of 4-dimensional manifolds belonging to
this subclass are studied. A condition this manifolds to be conformally flat is given.
An example of such 4-dimensional manifold is constructed on a Lie group. The
manifold obtained in this way is proved to be Einstein.
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1 Preliminaries

Let (M,J, g) be a 2n-dimensional almost complex manifold with Norden metric, i.e. J
is an almost complex structure and g is a metric on M such that:

(1.1) J2X = −X, g(JX, JY ) = −g(X,Y ), X, Y ∈ X(M).

The associated metric g̃ of g on M , given by g̃(X,Y ) = g(X, JY ), is a Norden metric,
too. Both metrics are necessarily of signature (n, n).

Further, X,Y, Z,W (x, y, z, w, respectively) will stand for arbitrary differentiable vec-
tor fields on M (vectors in TpM , p ∈M , respectively).

Let ∇ be the Levi-Civita connection of the metric g. Then, the tensor field F of type
(0, 3) on M is defined by F (X,Y, Z) = g ((∇XJ)Y, Z) and has the following symmetries

(1.2) F (X,Y, Z) = F (X,Z, Y ) = F (X, JY, JZ).

Let {ei} (i = 1, 2, . . . , 2n) be an arbitrary basis of TpM at a point p of M . The
components of the inverse matrix of g are denoted by gij with respect to the basis {ei}.

The Lie forms θ and θ∗ associated with F are defined by

(1.3) θ(z) = gijF (ei, ej , z), θ∗ = θ ◦ J,

and the corresponding Lie vector is denoted by Ω, i.e. θ(z) = g(z,Ω).
A classification of the almost complex manifolds with Norden metric is introduced in

[2], where eight classes of these manifolds are characterized according to the properties
of F . The three basic classes are given as follows:

(1.4)

W1 : F (X,Y, Z) = 1
2n [g(X,Y )θ(Z) + g(X,Z)θ(Y )

+g(X, JY )θ(JZ) + g(X, JZ)θ(JY )] ;
W2 : F (X,Y, JZ) + F (Y, Z, JX) + F (Z,X, JY ) = 0, θ = 0;
W3 : F (X,Y, Z) + F (Y,Z,X) + F (Z,X, Y ) = 0;

1



Let R be the curvature tensor of ∇, i.e. R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z
and R(X,Y, Z,W ) = g (R(X,Y )Z,W ).

A tensor L of type (0, 4) is called curvature-like if it satisfies the following condi-
tions for any X,Y, Z,W ∈ X(M) : L(X,Y, Z,W ) = −L(Y,X,Z,W ) = −L(X,Y,W,Z),
L(X,Y, Z,W ) + L(Y,Z,X,W ) + L(Z,X, Y,W ) = 0.

The Ricci tensor ρ(L) and the scalar curvatures τ(L) and τ∗(L) of L are defined by:

(1.5) ρ(L)(y, z) = gijL(ei, y, z, ej), τ(L) = gijρ(L)(ei, ej), τ∗(L) = gijρ(L)(ei, Jej).

A curvature-like tensor L is said to be a Kählerian if L(X,Y, JZ, JW ) = −L(X,Y, Z,W ).
Let S be a symmetric tensor of type (0, 2). We consider the following curvature-like

tensors of type (0, 4):

(1.6)
ψ1 (S) (X,Y, Z,W ) = g(Y, Z)S(X,W )− g(X,Z)S(Y,W )

+g(X,W )S(Y, Z)− g(Y,W )S(X,Z); π1 = 1
2ψ1(g);

π2(X,Y, Z,W ) = g(Y, JZ)g(X, JW )− g(X, JZ)g(Y, JW ); π3 = −ψ1 (g̃) .

The Weyl tensor W of R is defined as usually by

(1.7) W (R) = R− 1
2n− 2

{
ψ1(ρ)−

τ

2n− 1
π1

}
.

It is known that the Weyl tensor vanishes if and only if the manifold is conformally flat.
Let α = {x, y} be a non-degenerate 2-plane spanned by the vectors x, y ∈ TpM ,

p ∈ M . The sectional curvatures of α with respect to the curvature-like tensor L are
given by

(1.8) ν(L; p) =
L(x, y, y, x)
π1(x, y, y, x)

, ν∗(L; p) =
L(x, y, y, x)
π1(x, y, y, x)

.

Let us note that the square norm of ∇J is defined by

(1.9) ‖∇J‖2 = gijgklg
(
(∇eiJ)ek, (∇ejJ)el

)
.

Definition 1.1. [3] An almost complex manifold with Norden metric satisfying the
condition ‖∇J‖2 = 0 is said to be an isotropic Kähler manifold with Norden metric.

2 Curvature properties of 4-dimensionalW∗
1 -manifolds

Let (M,J, g) be a W1-manifold with closed the Lie form θ∗, i.e. (∇Xθ) JY = (∇Y θ) JX.
We denote the class of these manifolds by W ∗

1 ⊂ W1.
In [6] is introduced the tensor R∗ by

(2.1) R∗ = R− 1
2n
ψ1(S), S(X,Y ) =

(
∇Xθ

)
JY +

1
2n
θ(X)θ(Y ) +

θ(Ω)
4n

g(X,Y ).

By the fact that S is symmetric on a W∗
1 -manifold we conclude that R∗ is a curvature-like

tensor. It is proved [6] that in this case the tensor R∗ is Kählerian and W (R) = W (R∗).
In [7] is established the following
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Theorem 2.1. [7] Let (M,J, g) be a 4-dimensional almost complex manifold with Norden
metric and let L be a Kähler tensor on M . Then L has the following form

(2.2) L = ν(L){π1 − π2}+ ν∗(L)π3, ν(L) =
τ(L)

8
, ν∗(L) =

τ∗(L)
8

.

Then, by (1.7), (2.1) and Theorem 2.1 we obtain

Theorem 2.2. Let (M,J, g) be a 4-dimensional W∗
1 -manifold. Then, the curvature

tensor R and the Weyl tensor W (R) have the forms, respectively

(2.3) R =
τ∗
8
{π1 − π2} −

τ∗
12
π1 +

1
2
{
ψ1(ρ)−

τ

3
π1

}
, W (R) =

τ∗
24
{π1 − 3π2} ,

where τ∗ = τ(R∗) = τ − 3
2

[
div(JΩ)− θ(Ω)

4

]
and div(JΩ) = ∇iJ

i
kΩk.

By Theorem 2.2 we obtain

Theorem 2.3. The Weyl tensor of a 4-dimensional W∗
1 -manifold vanishes if and only

if the condition τ = 3
2

[
div(JΩ)− θ(Ω)

4

]
holds.

It is known that a 4-dimensional almost complex manifold with Norden metric is
called a space form if its curvature tensor has the form R = τ

12π1. Obviously, such
manifolds are Einstein, locally symmetric and conformally flat.

Corollary 2.4. If a 4-dimensional W∗
1 -manifold is a space form, τ = 3

2

[
div(JΩ)− θ(Ω)

4

]
.

It has been proved [7] that on a W1-manifold it is valid

(2.4) ‖∇J‖2 =
2
n
θ(Ω).

Then, by Theorem 2.2, Definition 1.1 and (2.4) it follows immediately

Corollary 2.5. Let (M,J, g) be a 4-dimensional isotropic Kähler W∗
1 -manifold. Then,

its curvature tensor has the form R = 2τ−3div(JΩ)
48 {π1 − 3π2}+ 1

2

{
ψ1(ρ)− τ

3π1

}
.

3 A Lie group as a 4-dimensional W∗
1 -manifold

Let g be a real 4-dimensional Lie algebra corresponding to a real connected Lie group G.
If {X1, X2, X3, X4} is a global basis of left invariant vector fields on G and [Xi, Xj ] =
Ck

ijXk, then the Jacobi identity for Ck
ij holds:

(3.1) Ck
ijC

l
ks + Ck

jsC
l
ki + Ck

siC
l
kj = 0.

We define an almost complex structure on G by the conditions:

(3.2) JX1 = X3, JX2 = X4, JX3 = −X1, JX4 = −X2.
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Let us consider the left-invariant metric given by

(3.3)
g(X1, X1) = g(X2, X2) = −g(X3, X3) = −g(X4, X4) = 1,
g(Xi, Xj) = 0 for i 6= j.

The introduced metric Norden because of (3.2). In this way, the induced 4-dimensional
manifold (G, J, g) is an almost complex manifold with Norden metric.

Further, from the well-known equality

(3.4)
2g(∇XY, Z) = Xg(Y,Z) + Y g(X,Z)− Zg(X,Y )

+g([X,Y ], Z) + g([Z,X], Y ) + g([Z, Y ], X)

we obtain

(3.5)
2F (Xi, Xj , Xk) = g ([Xi, JXj ]− J [Xi, Xj ], Xk)
+g ([Xk, JXi]− [JXk, Xi], Xj) + g (J [Xk, Xj ]− [JXk, Xj ], Xi) .

Let (G, J, g) be a W1-manifold. Then, by (1.2), (1.3), (1.4), (3.5) we prove

Proposition 3.1. If (G, J, g) is a 4-dimensional W1-manifold, the Lie algebra g of G is
given by the conditions:

(3.6)

C1
13 = C2

23 − C4
12 = C2

14 − C4
34, C1

24 = −(C4
12 + C2

14) = −(C2
23 + C4

34),
C2

13 = C3
12 − C1

23 = C3
34 − C1

14, C2
24 = C3

12 + C1
14 = C1

23 + C3
34,

C3
13 = C2

12 + C4
23 = C4

14 + C2
34, C3

24 = C2
34 − C4

23 = C2
12 − C1

14,

C4
13 = −(C3

14 + C1
34) = −(C1

12 + C2
23), C4

24 = C3
14 − C1

12 = C3
23 − C1

34,

where Ck
ij ∈ R (i, j, k = 1, 2, 3, 4) satisfy the Jacobi identity (3.1).

One solution to (3.1) and (3.6) is the 4-parametric family of Lie algebras g given by

(3.7)
[X1, X2] = λ1X1 + λ2X2, [X2, X3] = λ4X2 − λ1X3,

[X1, X3] = λ4X1 + λ2X3, [X2, X4] = λ3X2 − λ1X4,

[X1, X4] = λ3X1 + λ2X4, [X3, X4] = λ3X3 − λ4X4,

where λi ∈ R (i = 1, 2, 3, 4). Thus, the equality (3.7) defines a 4-parametric family of
4-dimensional W1-manifolds.

If we put in (3.7) one of the parameters λi equal to one and the rest three equal to
zero, we obtain the Lie algebra corresponding to the Lie group given as an example of a
W1-manifold (in the case of dimension four) by R. Castro and L. M. Hervella [1].

It is well-known that a Lie algebra g is solvable if its derived series

D0g = g, D1g = [g, g], . . . , Dk+1g = [Dkg,Dkg], . . .

vanishes for some k ∈ N. Then, having in mind (3.7), it is easy to check that D2g = {0}
and thus the Lie algebras (3.7) are solvable.

Let us remark that the Killing form [4] B(X,Y ) = tr(adXadY ) of the Lie algebras
(3.7) is degenerate, i.e. detB = 0. Hence, it cannot be a Norden metric.
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By (3.3), (3.4) and (3.7) we get the essential components of the Levi-Civita connection
of the manifold (G, J, g) as follows:

(3.8)

∇X1X1 = −λ1X2 + λ4X3 + λ3X4, ∇X1X2 = λ1X1, ∇X2X3 = λ4X2,

∇X2X2 = λ2X1 + λ4X3 + λ3X4, ∇X1X3 = λ4X1, ∇X2X4 = λ3X2,

∇X3X3 = −λ2X1 + λ1X2 − λ3X4, ∇X1X4 = λ3X1, ∇X3X4 = λ3X3.

∇X4X4 = −λ2X1 + λ1X2 − λ4X3,

Next, by (3.2), (3.3) and (3.5) we compute the essential non-zero components Fijk =
F (Xi, Xj , Xk) of the tensor F as follows:

(3.9)
−F114 = F312 = 1

2F444 = λ1, F214 = F412 = 1
2F333 = −λ2,

F112 = F314 = 1
2F222 = λ3, F212 = −F414 = 1

2F111 = λ4.

Having in mind (1.1), (1.3) and (3.9), we get the components θi = θ(Xi) and θ∗i = θ∗(Xi)
of the Lie forms θ and θ∗, respectively:

(3.10)
θ1 = −θ∗3 = 4λ4, θ2 = −θ∗4 = 4λ3, θ3 = θ∗1 = 4λ2, θ4 = θ∗2 = −4λ1,

θ(Ω) = 4
3div(JΩ) = −16

(
λ2

1 + λ2
2 − λ2

3 − λ2
4

)
.

Then, by (3.8) and (3.10) we get (∇Xi
θ∗)Xj = (∇Xj

θ∗)Xi, i, j = 1, 2, 3, 4. Hence the
Lie form θ∗ is closed and therefore we have

Proposition 3.2. Let (G, J, g) be the 4-dimensional W1-manifold constructed by (3.2)
and (3.3), and let g be the Lie algebra of G defined by (3.7). Then (G, J, g) ∈ W∗

1 .

By (2.4) and (3.10) we obtain the square norm of ∇J

(3.11) ‖∇J‖2 = −16
(
λ2

1 + λ2
2 − λ2

3 − λ2
4

)
.

Then, having in mind Definition 1.1 and (3.11), we get

Proposition 3.3. The manifold (G, J, g) is isotropic Kählerian if and only if the condi-
tion λ2

1 + λ2
2 − λ2

3 − λ2
4 = 0 holds.

By (3.3) and (3.8) we compute the non-zero components Rijkl = R(Xi, Xj , Xk, Xl)
of the curvature tensor R as follows:

(3.12) −R1221 = R1331 = R1441 = R2332 = R2442 = −R3443 = λ2
1 + λ2

2 − λ2
3 − λ2

4.

Let us consider the characteristic 2-planes αij spanned by the basic vectors {Xi, Xj}.
By (1.6), (1.8), (3.3) and (3.12) we get the corresponding sectional curvatures as

(3.13) ν(α12) = ν(α13) = ν(α14) = ν(α23) = ν(α24) = ν(α34) = −
(
λ2

1 + λ2
2 − λ2

3 − λ2
4

)
.

Then, according to the well-known Shur’s Theorem [5], from (3.13) it follows

Proposition 3.4. The curvature tensor of (G, J, g) has the form R = τ
12π1. Thus the

manifold is Einstein.

By (1.1), (1.5) and (3.10) we obtain the values of the scalar curvatures of the manifold
τ = −12

(
λ2

1 + λ2
2 − λ2

3 − λ2
4

)
and τ∗ = 0.

Finally, Proposition 3.3 and (3.12) give rise to

Proposition 3.5. The manifold (G, J, g) is isotropic Kählerian if and only if it is flat.
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