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Abstract

The class of the manifolds which are conformal equivalent to the Kähler mani-
folds with Norden metric is considered. The curvature tensor on such four-dimensional
manifolds is obtained. The case of isotropic Kähler manifolds with Norden metric is
studied. The transformation of the Levi-Civita connections of the both Norden metrics
is considered. Some invariant tensors of this transformation are obtained.
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1 Preliminaries

Let (M,J, g) be a 2n-dimensional almost complex manifold with Norden metric, i.e. J is an
almost complex structure and g is a metric on M such that:

(1.1) J2X = −X, g(JX, JY ) = −g(X,Y ), X, Y ∈ X(M).

The associated metric g̃ of g on M given by g̃(X,Y ) = g(X,JY ) is a Norden metric, too.
Both metrics are necessarily of signature (n, n).

Further, X,Y,Z,W (x, y, z, w, respectively) will stand for arbitrary differentiable vector
fields on M (vectors in TpM , p ∈M , respectively).

Let ∇ be the Levi-Civita connection of the metric g. Then, the tensor field F of type
(0, 3) on M is defined by

(1.2) F (X,Y,Z) = g ((∇XJ)Y,Z) .

It has the following symmetries

(1.3) F (X,Y,Z) = F (X,Z, Y ) = F (X,JY, JZ).

Let {ei} (i = 1, 2, . . . , 2n) be an arbitrary basis of TpM at a point p of M . The compo-
nents of the inverse matrix of g are denoted by gij with respect to the basis {ei}.

The Lie form θ associated with F is defined by

(1.4) θ(z) = gijF (ei, ej , z)

and the corresponding Lie vector is denoted by Ω, i.e. θ(z) = g(z,Ω).

A classification of the considered manifolds with respect to the tensor F is given in
[1]. Eight classes of almost complex manifolds with Norden metric are characterized there
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according to the properties of F . The three basic classesW1,W2, W3 and the classW1⊕W2

of the complex manifolds with Norden metric are given as follows:

(1.5)
W1 : F (X,Y,Z) =

1
2n [g(X,Y )θ(Z) + g(X,Z)θ(Y )

+g(X,JY )θ(JZ) + g(X,JZ)θ(JY )] ;

W2 : F (X,Y, JZ) + F (Y,Z, JX) + F (Z,X,JY ) = 0, θ = 0;

W3 : F (X,Y,Z) + F (Y,Z,X) + F (Z,X, Y ) = 0;

(1.6) W1 ⊕W2 : F (X,Y, JZ) + F (Y,Z, JX) + F (Z,X, JY ) = 0.

The special class W0 of the Kähler manifolds with Norden metric belonging to any other
class is determined by the condition F = 0.

Let R be the curvature tensor of ∇, i.e.

(1.7) R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The corresponding tensor of type (0, 4) is denoted by the same letter and is given by
R(X,Y,Z,W ) = g (R(X,Y )Z,W ).

A tensor L of type (0, 4) is called a curvature-like tensor if it satisfies the following
conditions for any X,Y,Z,W ∈ X(M) :

L(X,Y,Z,W ) = −L(Y,X,Z,W ) = −L(X,Y,W,Z),

L(X,Y,Z,W ) + L(Y,Z,X,W ) + L(Z,X, Y,W ) = 0.

Then, the Ricci tensor ρ(L) and the scalar curvatures τ(L) and τ∗(L) of L are defined by:

(1.8) ρ(L)(y, z) = gijL(ei, y, z, ej); τ(L) = gijρ(L)(ei, ej); τ∗(L) = gijρ(L)(ei, Jej).

A curvature-like tensor L is called a Kähler tensor if it satisfies the condition

(1.9) L(X,Y, JZ, JW ) = −L(X,Y,Z,W ), X, Y, Z,W ∈ X(M).

Further, let S be a symmetric and hybrid with respect to J tensor of type (0, 2), i.e.
S(JX, Y ) = S(JY,X). We consider the following curvature-like tensors of type (0, 4):

(1.10)

ψ1 (S) (X,Y,Z,W ) = g(Y,Z)S(X,W )− g(X,Z)S(Y,W )

+g(X,W )S(Y,Z)− g(Y,W )S(X,Z);

ψ2 (S) (X,Y,Z,W ) = g(Y, JZ)S(X,JW )− g(X,JZ)S(Y, JW )

+g(X,JW )S(Y, JZ)− g(Y, JW )S(X,JZ);

π1 =
1
2ψ1(g); π2 =

1
2ψ2(g); π3 = −ψ1 (g̃) = ψ2 (g̃) .

It is well known that the Weyl tensor W on a 2n-dimensional pseudo-Riemannian man-
ifold (n ≥ 2) is defined as follows

(1.11) W = R−
1

2n− 2

{
ψ1(ρ)−

τ

2n− 1
π1

}
.

Let α = {x, y} be a non-degenerate 2-plane spanned by vectors x, y ∈ TpM , p ∈M . The
sectional curvatures of α with respect to the curvature-like tensor L are given by

(1.12) ν(L; p) =
L(x, y, y, x)

π1(x, y, y, x)
, ν∗(L; p) =

L(x, y, y, Jx)

π1(x, y, y, x)
.
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The square norm ‖∇J‖2 of ∇J is defined in [3] by

(1.13) ‖∇J‖2 = gijgklg
(
(∇eiJ)ek, (∇ejJ)el

)
.

Following [3], [4] we define a second square norm ‖∇J‖2
∗

of ∇J with respect to the associated
metric g̃ by

(1.14) ‖∇J‖
2
∗
= g̃ij g̃klg̃

(
(∇eiJ)ek, (∇ejJ)el

)
,

where g̃ij = −J isg
js are the components of the inverse matrix of g̃ with respect to the basis

{ei}. Then, having in mind the definition (1.2) and the properties (1.3) of the tensor F ,
from (1.13) and (1.14) we obtain that

(1.15) ‖∇J‖2 = gijgklgpqFikpFjlq; ‖∇J‖2
∗
= −g̃ijgklgpqFikpFjlq,

where Fikp = F (ei, ek, ep).

Definition 1.1. An almost complex manifold with Norden metric satisfying the condition
‖∇J‖2 = 0 is called an isotropic Kähler manifold with Norden metric.

Definition 1.2. An almost complex manifold with Norden metric satisfying the condition
‖∇J‖2 = ‖∇J‖2

∗
= 0 is called a strong isotropic Kähler manifold with Norden metric.

2 Complex connections and curvature tensors on con-
formal Kähler manifolds with Norden metric

Let (M,J, g) be aW1-manifold with Norden metric. The Lie forms θ and θ∗ = θ◦J are closed
on M if and only if (∇Xθ)Y = (∇Y θ)X and (∇Xθ)JY = (∇Y θ)JX. A W1-manifold with
closed Lie forms is called a conformal Kähler manifold with Norden metric. The subclass of
these manifolds is denoted by W 0

1 .

In [2] is introduced a cannonical linear connection (so called B-connection) D on a
complex manifold with Norden metric as follows

(2.1) DXY = ∇XY −
1

2
J (∇XJ)Y.

It is shown that g and J are parallel with respect to the connection D. The curvature tensor
K of D is proved to be Kählerian.

In [6] is studied the Yano connection ∇′ given by

∇′XY = ∇XY +
1

4
{(∇XJ)JY + 2 (∇Y J)JX − (∇JXJ)Y } .

It is proved that the Yano connection is torsion-free and that ∇′J = 0 on a complex manifold
with Norden metric. In the same paper is obtained the Kähler curvature tensor R′ of type
(0, 4) of ∇′ on a W 0

1 -manifold as follows

(2.2) R′ = R−
1

4n
{ψ1 + ψ2} (S)−

1

8n2
ψ1(M)−

θ(Ω)

16n2
{3π1 + π2}+

θ(JΩ)

16n2
π3,

where

(2.3)
S(X,Y ) = (∇Xθ)JY +

1
4n [θ(X)θ(Y )− θ(JX)θ(JY )] ,

M(X,Y ) = θ(X)θ(Y ) + θ(JX)θ(JY ).

Then, having in mind (1.7), (2.1), (2.2) and (2.3) we receive the following
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Theorem 2.1. The Kähler curvature tensors of the connections D and ∇′ coincide on a
conformal Kähler manifold with Norden metric, i.e. K = R′.

Theorem 2.2. Let (M,J, g) be a four-dimensional almost complex manifold with Norden
metric and L be a Kähler tensor on M . Then, the tensor L has the following form

(2.4) L = ν(L) {π1 − π2}+ ν
∗(L)π3.

Proof. It is known [5] that in the tangent space TpM , p ∈ M , there exists a J-basis
{e1, e2, Je1, Je2} such that g(ei, ej) = −g(Jei, Jej) = δij , g(ei, Jej) = 0, i, j = 1, 2. Then,
by the use of (1.9), (1.10), (1.12) and after straightforward calculations we prove the truth-
fulness of (2.4).

From the last theorem and (1.8) it follows that

(2.5) ν(L) =
τ(L)

8
, ν∗(L) =

τ∗(L)

8
.

Then, having in mind (2.2) and (2.3) for n = 2, (2.4), (2.5) and (1.8) we obtain the following

Theorem 2.3. Let (M,J, g) be a four-dimensional W 0
1 -manifold. Then, for the curvature

tensor R of the Levi-Civita connection ∇ we have

(2.6)

R =
τ − div(JΩ)

8
{π1 − π2}+

trS∗

16
π3 −

1

8
{ψ1 − ψ2} (S) +

1

2

{
ψ1(ρ)−

τ

3
π1

}

+
1

4

[
div(JΩ)

2
−
τ

3
−
θ(Ω)

8

]
π1,

where trS∗ = gijS(ei, Jej) = −divΩ + θ(JΩ)
4 for n = 2, divΩ = ∇iΩ

i and div(JΩ) =
∇i(J ikΩ

k).

The last theorem and (1.11) imply the following

Corollary 2.1. Let (M,J, g) be four-dimensional W 0
1 -manifold. Then, for the Weyl tensor

we have

W =
τ − div(JΩ)

8
{π1 − π2}+

trS∗

16
π3 −

1

8
{ψ1 − ψ2} (S) +

1

4

[
div(JΩ)

2
−
τ

3
−
θ(Ω)

8

]
π1.

Next, taking into account (1.5) and (1.15) we obtain that on a W1-manifold

(2.7) ‖∇J‖2 =
2

n
θ(Ω), ‖∇J‖2

∗
= −

2

n
θ(JΩ)

and from (2.7) and Theorem 2.3 we receive

Corollary 2.2. Let (M,J, g) be a four-dimensional strong isotropic Kähler W 0
1 -manifold.

Then, for the curvature tensor R of ∇ we have

R =
τ − div(JΩ)

8
{π1 − π2} −

divΩ

16
π3 −

1

8
{ψ1 − ψ2} (S) +

1

2

{
ψ1(ρ)−

τ

3
π1

}

+
1

4

[
div(JΩ)

2
−
τ

3

]
π1.
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3 Invariant tensors of the transformation of the Levi-
Civita connections of g and g̃ on a W1-manifold

Let (M,J, g) be an almost complex manifold with Norden metric and ∇̃ be the Levi-Civita
connection of the associated metric g̃. In [2] is considered the tensor

Φ(X,Y,Z) = g
(
∇̃XY −∇XY,Z

)

and is obtained that

(3.1) Φ(X,Y,Z) =
1

2
{F (JZ,X, Y )− F (X,Y, JZ)− F (Y,X, JZ)} .

By the use of (1.5) and (3.1) we receive the following

Lemma 3.1. Let (M,J, g) be a W1-manifold with Norden metric. Then, for the connections

∇ and ∇̃ we have

(3.2) ∇̃XY = ∇XY +
1

2n
[g(X,JY )Ω− g(X,Y )JΩ] .

Let R̃ be the curvature tensor of ∇̃. Then, having in mind (1.7) and (3.2) we obtain

Theorem 3.1. Let (M,J, g) be a W1-manifold with Norden metric. Then, the curvature

tensors R and R̃ of type (1, 3) are related as follows

(3.3)

R̃(X,Y )Z = R(X,Y )Z + 1
2n

{
g(X,Z)

[
∇Y JΩ−

1
2nθ(JY )JΩ

]

−g(Y,Z)
[
∇XJΩ−

1
2nθ(JX)JΩ

]
− g(X,JZ)

[
∇Y Ω−

1
2nθ(Y )JΩ

]

+g(Y, JZ)
[
∇XΩ−

1
2nθ(X)JΩ

]}
.

Further, we consider the following tensors:

T1(X,Y )Z = R(X,Y )Z +
1
4n

{
g(X,Z)

[
∇Y JΩ−

1
2nθ(JY )JΩ

]

−g(Y,Z)
[
∇XJΩ−

1
2nθ(JX)JΩ

]
− g(X,JZ)

[
∇YΩ−

1
2nθ(Y )JΩ

]

+g(Y, JZ)
[
∇XΩ−

1
2nθ(X)JΩ

]}
;

T2(X,Y ) = ρ(X,Y )−
1
2n [g(X,Y )τ − g(X,JY )τ

∗] ;

T3(X,Y ) = (∇Xθ)Y +
1
4n [g(X,Y )θ(JΩ)− g(X,JY )θ(Ω)] .

Then, by the use of (1.2), (1.4), (3.2), (3.3) and (∇Xθ)Y = Xθ(Y ) − θ(∇XY ) we get the
following

Theorem 3.2. Let (M,J, g) be a W1-manifold with Norden metric. Then, the Lie form θ

and the tensors T1, T2, T3 are invariant by the transformation of the connections ∇and ∇̃.
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