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1 Introduction

Let (M,J) be an almost complex manifold with an almost complex structure
J . It is well known that on such manifolds there exists Hermitian metric
g with the property g(JX, JY ) = g(X,Y ) for any X,Y ∈ X(M). In this
case the manifold (M,J, g) is called an almost Hermitian manifold. On the
other hand, according to A. P. Norden 11, on an almost complex manifold
there exists also an indefinite metric g such that g(JX, JY ) = −g(X,Y ),
X,Y ∈ X(M). Almost complex manifolds with such a metric are originally
introduced in 9 under the name generalized B-manifolds and the metric g is
called B-metric. Later, a classification of almost complex manifolds with B-
metric is given in 5 and equivalent characteristic conditions for each of these
classes are obtained in 6. From another point of view, these manifolds are
studied in 8 where they are called almost complex Riemmanian manifolds.
Further, in this paper such manifolds are called almost complex manifolds
with Norden metric.

Furthermore, these manifolds are considered by many authors, for exam-
ple 1, 2, 3, 4. Let us note that examples of three of the main classes of almost
complex manifolds with Norden metric are given in 3.

An important problem in the geometry of almost complex manifolds with
Norden metric is the existing of linear connections with respect to which the
almost complex structure is parallel. In 6 there is introduced a B-connection
with non-zero torsion tensor field on a complex manifold with Norden metric
(M,J, g) with respect to which g and J are parallel. In the same paper there is
proved that the Bochner curvature tensor of the B-connection is an invariant
with respect to special conformal transformations of the metric g.

In this paper we introduce and study the Yano connection on an almost
complex manifold with Norden metric.

MarthaTeofilova: submitted to World Scientific on February 11, 2005 1



2 Preliminaries

Let (M,J) be a 2n-dimensional almost complex manifold, J2 = −id. A metric
g onM is called Norden if the almost complex structure J is an antiisometry
of the tangent space at any point of M , i.e.

g(JX, JY ) = −g(X,Y ), X, Y ∈ X(M).

Then, the manifold (M,J, g) is called an almost complex manifold with Norden
metric.

The associated metric g̃ of the manifold is defined by

g̃(X,Y ) = g(JX, Y ) = g(X,JY ).

Obviously, the metric g̃ is also a Norden metric. Both metrics are necessarily
of signature (n, n).

Let ∇ be the Levi-Civita connection of the metric g. The tensor field F
of type (0, 3) on the manifold is defined by

F (X,Y,Z) = g ((∇XJ)Y,Z) . (1)

This tensor has the following symmetries:

F (X,Y,Z) = F (X,Z, Y ) = F (X,JY, JZ). (2)

The associated Lee 1-forms θ and θ̃ on M are given by θ(x) =

gijF (ei, ej,x), θ̃ = θ ◦ J , where x is a tangent vector at an arbitrary point
p ∈ M , {ei}i=1,...,2n is a basis of the tangent space TpM and

(
gij
)
is the

inverse of the matrix associated to g.
The Nijenhuis tensor field N of the manifold is defined as follows

N(X,Y ) = (∇XJ)JY − (∇Y J)JX + (∇JXJ)Y − (∇JY J)X. (3)

In 5 the eight classes of almost complex manifolds with Norden metric are
characterized by conditions for F as follows

1. The class W0 of the Kähler manifolds with Norden metric:

F = 0 ⇐⇒ ∇J = 0

2. The class W1:

F (X,Y,Z) = 1
2n [g(X,Y )θ(Z) + g(X,Z)θ(Y )

+g(X,JY )θ(JZ) + g(X,JZ)θ(JY )]
(4)
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3. The class W2 of the special complex manifolds with Norden metric:

F (X,Y, JZ) + F (Y,Z, JX) + F (Z,X, JY ) = 0, θ = 0 ⇐⇒
N = 0, θ = 0

(5)

4. The class W3 of quasi-Kähler manifolds with Norden metric:

F (X,Y,Z) + F (Y,Z,X) + F (Z,X, Y ) = 0

5. The class W1 ⊕W2 of the complex manifolds with Norden metric:

F (X,Y, JZ) + F (Y,Z, JX) + F (Z,X, JY ) = 0 ⇐⇒ N = 0 (6)

6. The class W2 ⊕W3 of semi-Kähler manifolds with Norden metric:

θ = 0

7. The class W1 ⊕W3:

F (X,Y,Z) + F (Y,Z,X) + F (Z,X, Y ) =
1
n
[g(X,Y )θ(Z) + g(X,Z)θ(Y ) + g(Y,Z)θ(X)

+g(X,JY )θ(JZ) + g(X,JZ)θ(JY ) + g(Y, JZ)θ(JX)]

8. The class of almost complex manifolds with Norden metric: no conditions.

In the paper 6 there are considered two types of conformal transformations
of the Norden metric g on an almost complex manifold (M,J, g):

1. Conformal transformations of type I

g = e2ug,

where u is a pluriharmonic function on M .

2. Conformal transformations of type II

g = e2u (cos 2vg + sin 2vg̃) ,

where u+ iv is a holomorphic function on M , i.e. dv = −du ◦ J .

It is proved that the subclass W 0
1 of W1 with closed Lee 1-forms θ and

θ̃ is conformally equivalent to a Kähler manifold with Norden metric by a
transformation of type I. The manifolds belonging toW 0

1 are called conformal
Kähler manifolds with Norden metric. The class W 0

1 is closed with respect to
the conformal transformations of type I and type II.
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Let us note that examples of some of the classes are given as follows: in
1 for W2 and W2⊕W3; in

3 for W0, W1 and W2; in
4 for W0 and W

0
1 ; in

6 for
W 0
1 ; in

7 for W0.
A tensor L of type (0, 4) is called a curvature-like tensor if it satisfies the

following conditions for any X,Y,Z,W ∈ X(M) :

L(X,Y,Z,W ) = −L(Y,X,Z,W );

L(X,Y,Z,W ) + L(Y,Z,X,W) + L(Z,X,Y,W ) = 0;

L(X,Y,Z,W ) = −L(X,Y,W,Z).

A curvature-like tensor L is called a Kähler tensor if it satisfies the condition

L(X,Y, JZ, JW ) = −L(X,Y,Z,W ), X, Y, Z,W ∈ X(M).

Then, the associated tensor L̃ defined by L̃(X,Y,Z,W ) = L(X,Y,Z, JW ) is
also a Kähler tensor.

Let us consider the following tensors of type (0, 4), where S is a tensor of
type (0, 2):

ψ1 (S) (X,Y,Z,W ) = g(Y,Z)S(X,W )− g(X,Z)S(Y,W )

+g(X,W )S(Y,Z)− g(Y,W )S(X,Z);

ψ2 (S) (X,Y,Z,W ) = g(Y, JZ)S(X,JW )− g(X,JZ)S(Y, JW )

+g(X,JW )S(Y, JZ)− g(Y, JW )S(X,JZ);

π1 (X,Y,Z,W ) =
1
2ψ1(g)(X,Y,Z,W )

= g(Y,Z)g(X,W )− g(X,Z)g(Y,W );

π2 (X,Y,Z,W ) =
1
2ψ2(g)(X,Y,Z,W )

= g(Y, JZ)g(X,JW )− g(X,JZ)g(Y, JW );

π3(X,Y,Z,W ) = −ψ1 (g̃) (X,Y,Z,W ) = ψ2 (g̃) (X,Y,Z,W )

= −g(Y,Z)g(X,JW ) + g(X,Z)g(Y, JW )

−g(X,W )g(Y, JZ) + g(Y,W )g(X,JZ).

(7)

It is known 6 that the tensor ψ1(S) is a curvature-like tensor iff S is
symmetric and the tensor ψ2(S) is a curvature-like tensor iff S is symmetric
and hybrid with respect to J , i.e. S(JX, Y ) = S(JY,X). In this case the
tensors π1 − π2, π3 and ψ1(S)− ψ2(S) are Kähler tensors.

Let L be a Kähler tensor over TpM , p ∈ M and {ei}i=1,...,2n be a basis
of TpM . Then the Ricci tensor ρ(L) and the scalar curvatures τ(L) and τ̃(L)
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are given by

ρ (L) (Y,Z) = gisL(ei, Y, Z, es);

τ(L) = gjkρ (L) (ej , ek);

τ̃(L) = τ(L̃) = gjkρ (L) (ej , Jek).

(8)

The associated Bochner curvature tensor B(L) is defined by

B(L) = L− 1
2(n−2) {ψ1(ρ)− ψ2(ρ)}

+ 1
4(n−1)(n−2) {τ(π1 − π2) + τ̃π3} , n ≥ 3.

(9)

In 6 there is introduced the B-connection D on (M,J, g) ∈ W1. It is
proved that if K is the Kähler curvature tensor for D then the Bochner tensor
B(K) is a conformal invariant of type I and type II.

3 Curvature properties of W1-manifolds

Let (M,J, g) be a W1-manifold. Then, having in mind (6), the Nijenhuis

tensor vanishes on M . The Lee 1-forms θ and θ̃ are said to be closed iff
dθ = dθ̃ = 0 or the following equivalent conditions hold:

(∇Xθ)Y = (∇Y θ)X, (∇X θ̃)Y = (∇Y θ̃)X. (10)

Taking into account (1), (4) and (10) we obtain the following

Lemma 1 If (M,J, g) ∈W 0
1 then the following conditions are valid:

(∇Xθ)Y = (∇Y θ)X, (∇Xθ)JY = (∇Y θ)JX,

(∇XJ)Y =
1

2n
[g(X,Y )Ω + g(X,JY )JΩ+ θ(Y )X + θ(JY )JX] , (11)

where Ω is the Lee vector corresponding to θ, i.e. g(X,Ω) = θ(X).

Let R be the curvature tensor of ∇, i.e. R(X,Y )Z = ∇X∇Y Z −
∇Y∇XZ−∇[X,Y ]Z. The corresponding tensor of type (0, 4) is denoted by the
same letter and is given by R(X,Y,Z,W ) = g (R(X,Y )Z,W ). Then Lemma
1, (1) and (4) imply the following conditions

(∇XF ) (Y,Z,W ) = g ((∇XK) (Y,Z),W ) , (12)

R(X,Y )JZ = JR(X,Y )Z + (∇XK) (Y,Z)− (∇YK) (X,Z), (13)

where K(X,Y ) = 1
2n [g(X,Y )Ω + g(X,JY )JΩ+ θ(Y )X + θ(JY )JX].
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Now let us consider the following tensors of type (0, 2):

S(X,Y ) = (∇Xθ)JY +
1
4n [θ(X)θ(Y )− θ(JX)θ(JY )] ,

M(X,Y ) = θ(X)θ(Y ) + θ(JX)θ(JY ).
(14)

They have the following symmetries

S(JX, JY ) = −S(X,Y ), M(JX, JY ) =M(X,Y ).

Theorem 2 Let (M,J, g) be a conformal Kähler manifold with Norden met-
ric. Then the curvature tensor R of ∇ has the following property

R(X,Y, JZ, JW ) = −R(X,Y,Z,W )

+ 1
2n

{
[ψ1 + ψ2] (S) +

1
4n [ψ1 + ψ2] (M) +

1
2nθ(Ω) [π1 + π2]

}
(X,Y,Z,W ).

(15)

Proof. Having in mind (12), the condition (13) implies

R(X,Y, JZ,W ) = R(X,Y,Z, JW ) + (∇XF ) (Y,Z,W )− (∇Y F ) (X,Z,W ).
(16)

Then, taking into account Lemma 1, (4), (7), (14) from (16) we receive
(15).

Next, we define the tensor field R∗ of type (0, 4) by

R∗ = R−
1

2n
ψ1(L), (17)

where

L = S +
1

4n
M +

θ(Ω)

4n
g. (18)

Since the tensor L is symmetric then R∗ is a curvature-like tensor on any
W 0
1 -manifold. Moreover, taking into account Theorem 2, (7), (17) and (18)

we obtain R∗(X,Y, JZ, JW ) = −R∗(X,Y,Z,W ), i.e. R∗ is a Kähler tensor.
Then, according to (7), (8) and (17) we get the following interconnections

between the corresponding Ricci tensors and the scalar curvatures of R and
R∗:

ρ∗ = ρ− 1
2n [gtrL+ 2(n− 1)L] ;

τ∗ = τ − 2n−1
n
trL, trL = n

2n−1(τ − τ
∗).

Hence we obtain

L(Y,Z) =
n

n− 1

{
ρ(Y,Z)− ρ∗(Y,Z)−

τ − τ∗

2(2n− 1)
g(Y,Z)

}
.
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The last equality and (17) imply

R∗ −
1

2(n− 1)

{
ψ1(ρ

∗)−
τ∗

2n− 1
π1

}
= R−

1

2(n− 1)

{
ψ1(ρ)−

τ

2n− 1
π1

}
.

(19)
The Weyl tensor W (R) of R is defined as follows

W (R) = R−
1

n− 2

{
ψ1(ρ)−

τ

n− 1
π1

}
. (20)

It is well known that the Weyl tensor of type (0, 4) of R is an invariant of the
conformal transformation of type I, i.e. W (R) = e2uW (R). Then, using (19)
and (20) we obtain the following

Theorem 3 Let (M,J, g) be a conformal Kähler manifold with Norden met-
ric. Then the Weyl tensors of R and R∗ coincide, i.e. W(R) =W (R∗).

4 The Yano connection on almost complex manifolds with

Norden metric

Let (M,J, g) be an almost complex manifold with Norden metric. Following
12 and 13 we consider the Yano connection defined by

∇′XY = ∇XY + T (X,Y ), (21)

where

T (X,Y ) =
1

4
[(∇XJ) JY + 2 (∇Y J)JX − (∇JXJ)Y ] . (22)

The torsion tensor field Q of ∇′ is given by

Q(X,Y ) = ∇′XY −∇
′

YX − [X,Y ] = T (X,Y )− T (Y,X). (23)

Taking into account (3), (22) and (23) we receive the following

Lemma 4 Let (M,J, g) be an almost complex manifold with Norden metric.
Then the Yano connection is symmetric iff the Nijenhuis tensor field vanishes

on M.

Let us note that the Yano connection is symmetric on the classes W1, W2

and W1 ⊕W2 according to Lemma 4 and the conditions (4), (5) and (6).

Theorem 5 Let (M,J, g) be an almost complex manifold with Norden metric
and ∇′ be the Yano connection on M . Then ∇′J = 0 iff N = 0.
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Proof. The well known equality (∇′XJ)Y = ∇
′

XJY − J∇
′

XY and (3), (21),
(22) imply

(∇′XJ)Y = −
1

2
N(X,JY ).

Thus, the vanishing of ∇′J is equivalent to the vanishing of N .
Next, we consider the Yano connection on W1-manifolds. The conditions

(11) and (22) imply

T (X,Y ) = 1
4n [g(X,JY )Ω− g(X,Y )JΩ+ θ(JX)Y − θ(X)JY

+θ(JY )X − θ(Y )JX] .
(24)

Theorem 6 Let (M,J, g) be a W1-manifold. Then the covariant derivatives

of g and g̃ with respect to the Yano connection satisfy the following conditions:

(∇′Xg) (Y,Z) =
1

2n
[θ(X)g(Y, JZ)− θ(JX)g(Y,Z)] ; (25)

(∇′X g̃) (Y,Z) = −
1

2n
[θ(X)g(Y,Z) + θ(JX)g(Y, JZ)] . (26)

Proof. From (1), (2), (6), (21) and (22) we obtain:

(∇′Xg) (Y,Z) =
1

2
[2F (Y,X, JZ) + F (JX,Y,Z)− F (X,Y, JZ)] ; (27)

(∇′X g̃) (Y,Z) =
1

2
[F (JZ,X, JY )− F (Z,X, Y )] . (28)

Then, taking into account (4), the equalities (27) and (28) imply (25) and
(26), respectively.

Let R′ be the curvature tensor of ∇′ of type (1, 3). Then, according to
(21) we have:

R′(X,Y )Z = R(X,Y )Z + (∇XT ) (Y,Z)− (∇Y T ) (X,Z)

+T (X,T (Y,Z))− T (Y, T (X,Z)) ;

R′(X,Y,Z,W ) = R(X,Y,Z,W ) + (∇XT ) (Y,Z,W )− (∇Y T ) (X,Z,W )

+T (X,T (Y,Z),W )− T (Y, T (X,Z),W ) ,
(29)

where R′(X,Y,Z,W ) = g (R′(X,Y )Z,W ) and

T (X,Y,Z) = 1
4n [g(X,JY )θ(Z)− g(X,Y )θ(JZ) + g(X,Z)θ(JY )

−g(X,JZ)θ(Y ) + g(Y,Z)θ(JX)− g(Y, JZ)θ(X)] .
(30)
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Theorem 7 Let (M,J, g) be a conformal Kähler manifold with Norden met-
ric. Then the curvature tensors R and R′ are related as follows

R′ = R− 1
4n

{
[ψ1 + ψ2] (S) +

1
2nψ1(M) +

1
4nθ(Ω) [3π1 + π2]

− 1
4nθ(JΩ)π3

}
.

(31)

Proof. By the use of Lemma 1, (4), (7), (14), (30) and after straightforward
calculations in the right side of (29) we receive (31).

The last theorem, (7) and (15) imply

Corollary 8 Let (M,J, g) be a conformal Kähler manifold with Norden met-
ric. Then the curvature tensor of the Yano connection is Kählerian.

Theorem 9 Let (M,J, g) be a conformal Kähler manifold with Norden met-
ric. Then the Bochner curvature tensors of the Kähler tensors R′ and R∗

coincide.

Proof. From (17), (18) and (31) we get

R′ = R∗ +
1

4n
[ψ1 − ψ2] (A), (32)

where

A = S +
θ(Ω)

8n
g −

θ(JΩ)

8n
g̃.

Then, for the corresponding Ricci tensors ρ′ = ρ(R′), ρ∗ = ρ(R∗) and the
scalar curvatures τ ′ = τ(R′), τ∗ = τ(R∗), τ̃ ′ = τ̃(R′), τ̃∗ = τ̃(R∗) we obtain

ρ′ = ρ∗ +
τ ′ − τ∗

4(n− 1)
g −

τ̃ ′ − τ̃∗

4(n− 1)
g̃ +

n− 2

2n
A.

From the last equality, (9) and (32) it follows B(R′) = B(R∗).

Lemma 10 Let (M,J, g) be a conformal Kähler manifold with Norden metric
and let (M,J, g) be its conformally equivalent complex manifold with Norden
metric by a transformation of type I. Then the corresponding curvature tensors

R and R are related as follows

R = e2u {R− ψ1(G)− π1σ(U)} ,

where G(X,Y ) = (∇Xσ)Y − σ(X)σ(Y ), σ(X) = Xu = du(X), U = grad u.

Taking into account the last lemma and the definition of the tensor R∗,
we obtain the following interconnection of (1, 3)-tensors

R = R∗ +
θ(Ω)

4n2
π3. (33)

Having in mind (9), from (33) we receive the following

Corollary 11 The Bochner tensors of R and R∗ are coincident on a confor-

mal Kähler manifold with Norden metric.
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