10th International Workshop on Complex Structures, Integrability and Vector Fields

September 13-17, 2010, Sofia

Complex Connections on Conformal Kähler Manifolds with Norden Metric

Marta Teofilova, Ph.D. Faculty of Mathematics and Informatics University of Plovdiv

* This work is supported by Project MU-5 of The Fund for Scientific Research of The University of Plovdiv

Let (M, J, g) be a 2n-dimensional almost complex manifold with Norden metric, i.e. J is an almost complex structure and g is a pseudo-Riemannian metric on M such that

$$J^2x = -x, \qquad g(Jx, Jy) = -g(x, y), \qquad x, y \in \mathfrak{X}(M).$$

The associated metric \tilde{g} of g is given by

$$\widetilde{g}(x,y)=g(x,Jy)$$

and is a Norden metric, too. Both metrics are necessarily of signature (n, n).

Let ∇ be the Levi-Civita connection of the metric g. The fundamental tensor field F of type (0, 3) on M is defined by

$$F(x, y, z) = g\left((\nabla_x J)y, z\right)$$

and has the following symmetries

$$F(x, y, z) = F(x, z, y) = F(x, Jy, Jz).$$

The Lie 1-forms θ and θ^* associated with F, and the Lie vector Ω , corresponding to θ , are defined by, respectively

$$\theta(x) = g^{ij}F(e_i, e_j, x), \qquad \quad \theta^* = \theta \circ J, \qquad \quad \theta(x) = g(x, \Omega),$$

where $\{e_i\}$ (i = 1, 2, ..., 2n) is an arbitrary basis of T_pM at a point p of M, and g^{ij} are the components of the inverse matrix of g with respect to the basis $\{e_i\}$.

A classification of the almost complex manifolds with Norden metric is introduced by G. Ganchev and A. Borisov in [1]*, where eight classes of these manifolds are characterized according to the properties of F. The three basic classes \mathcal{W}_i (i = 1, 2, 3) are given by, respectively

• the class \mathcal{W}_1 :

$$\begin{split} F(x,y,z) &= \frac{1}{2n} \left[g(x,y) \theta(z) + g(x,Jy) \theta(Jz) \right. \\ & \left. + g(x,z) \theta(y) + g(x,Jz) \theta(Jy) \right]; \end{split}$$

• the class \mathcal{W}_2 of the special complex manifolds with Norden metric:

$$F(x, y, Jz) + F(y, z, Jx) + F(z, x, Jy) = 0, \quad \theta = 0;$$

^{*[1]} G. Ganchev, A. Borisov, Note on the almost complex manifolds with a Norden metric, Compt. Rend. Acad. Bulg. Sci. 39(5) (1986), 31–34.

• the class \mathcal{W}_3 of the quasi-Kähler manifolds with Norden metric:

$$F(x, y, z) + F(y, z, x) + F(z, x, y) = 0.$$

The special class $\mathcal{W}_{\mathbf{0}}$ of the Kähler manifolds with Norden metric is characterized by the condition F = 0 and is contained in each of the other classes.

Let R be the curvature tensor of ∇ , i.e.

$$R(x,y)z = \nabla_x \nabla_y z - \nabla_y \nabla_x z - \nabla_{[x,y]} z.$$

The corresponding (0,4)-type tensor is defined by

$$R(x,y,z,u)=g\left(R(x,y)z,u\right).$$

A tensor L of type (0,4) is said to be *curvature-like* if it has the properties of R, i.e.

$$\begin{split} L(x,y,z,u) &= -L(y,x,z,u) = -L(x,y,u,z), \\ L(x,y,z,u) + L(y,z,x,u) + L(z,x,y,u) = 0. \end{split}$$

The Ricci tensor $\rho(L)$ and the scalar curvatures $\tau(L)$ and $\tau^*(L)$ of L are defined by:

$$\label{eq:phi} \begin{split} \rho(L)(y,z) &= g^{ij}L(e_i,y,z,e_j), \\ \tau(L) &= g^{ij}\rho(L)(e_i,e_j), \qquad \tau^*(L) = g^{ij}\rho(L)(e_i,Je_j) \end{split}$$

A curvature-like tensor L is called a Kähler tensor if

$$L(x, y, Jz, Ju) = -L(x, y, z, u).$$

Let S be a tensor of type (0,2). We consider the following tensors $[3]^*$:

$$\begin{split} \psi_1(S)(x,y,z,u) &= g(y,z)S(x,u) - g(x,z)S(y,u) \\ &+ g(x,u)S(y,z) - g(y,u)S(x,z), \\ \psi_2(S)(x,y,z,u) &= g(y,Jz)S(x,Ju) - g(x,Jz)S(y,Ju) \\ &+ g(x,Ju)S(y,Jz) - g(y,Ju)S(x,Jz), \end{split}$$

$$\pi_1 = \frac{1}{2}\psi_1(g), \qquad \pi_2 = \frac{1}{2}\psi_2(g), \qquad \pi_3 = -\psi_1(\widetilde{g}) = \psi_2(\widetilde{g}).$$

 $\psi_1(S)$ is curvature-like if S is symmetric; $\psi_2(S)$ is curvature-like is S is symmetric and hybrid with respect to J, i.e. S(x, Jy) = S(y, Jx); In the last case the tensor $\{\psi_1 - \psi_2\}(S)$ is Kählerian.

^{*[3]} G. Ganchev, K. Gribachev, V. Mihova, *B*-connections and their conformal invariants on conformally Kähler manifolds with *B*-metric, Publ. Inst. Math. (Beograd) (N.S.) 42(56) (1987), 107–121.

The usual conformal transformation of the Norden metric g is defined by

$$\overline{g} = e^{2u}g,$$

where u is a pluriharmonic function, i.e. the 1-form $du \circ J$ is closed.

A \mathcal{W}_1 -manifold with closed Lie 1-forms θ and θ^* is called a *conformal* Kähler manifold with Norden metric.

In [3] it is proved that such a manifold is conformally equivalent to a Kähler manifold with Norden metric by the usual conformal transformation. The subclass of these manifolds is denoted by \mathcal{W}_1^0 . It is known that on a pseudo-Riemannian manifold M(dim $M = 2n \ge 4$) the conformal invariant Weyl tensor has the form

$$W(R) = R - \frac{1}{2(n-1)} \{ \psi_1(\rho) - \frac{\tau}{2n-1} \pi_1 \}.$$

Let L be a Kähler curvature-like tensor on (M, J, g), dim $M = 2n \ge 6$. Then the Bochner tensor B(L) for L is defined by [3]:

$$B(L) = L - \frac{1}{2(n-2)} \{ \psi_1 - \psi_2 \} (\rho(L)) + \frac{1}{4(n-1)(n-2)} \{ \tau(L) (\pi_1 - \pi_2) + \tau^*(L) \pi_3 \}.$$

In [3] it is proved that the Bochner tensor of the canonical connection is a conformal invariant of the canonical conformal group generated by the usual conformal transformation on a \mathcal{W}_1^0 -manifold.

2. Complex Connections on W_1 -manifolds

Definition 2.1. [4]* A linear connection ∇' on an almost complex manifold (M, J) is said to be *almost complex* if $\nabla' J = 0$.

Theorem 2.1. On a \mathcal{W}_1 -manifold with Norden metric there exists an 8-parametric family of complex connections ∇' defined by

$$\nabla'_x y = \nabla_x y + Q(x, y) \tag{2.1}$$

where the deformation tensor Q(x, y) is given by

$$Q(x,y) = \frac{1}{2n} \left[\theta(Jy)x - g(x,y)J\Omega \right] + \frac{1}{n} \left\{ \lambda_{1}\theta(x)y + \lambda_{2}\theta(x)Jy + \lambda_{3}\theta(Jx)y + \lambda_{4}\theta(Jx)Jy + \lambda_{5} \left[\theta(y)x - \theta(Jy)Jx \right] + \lambda_{6} \left[\theta(y)Jx + \theta(Jy)x \right] + \lambda_{7} \left[g(x,y)\Omega - g(x,Jy)J\Omega \right] + \lambda_{8} \left[g(x,Jy)\Omega + g(x,y)J\Omega \right] \right\},$$
(2.2)
$$\lambda_{i} \in \mathbb{R}, i = 1, 2, ..., 8.$$

*[4] S. Kobayshi, K. Nomizu, *Foundations of differential geometry* vol. 1, 2, Intersc. Publ., New York, 1963, 1969.

Remark 2.1. The 2-parametric family of complex connections obtained for

 $\lambda_1 = \lambda_4, \quad \lambda_3 = -\lambda_2, \quad \lambda_5 = \lambda_7 = 0, \quad \lambda_8 = -\lambda_6 = \frac{1}{4}$ is studied by us in [7].

Theorem 2.2. The complex connections ∇' defined by (2.1) and (2.2) are symmetric on a \mathcal{W}_1 -manifold if and only if

$$\lambda_1 = -\lambda_4 = \lambda_5, \qquad \lambda_2 = \lambda_3 - \frac{1}{2} = \lambda_6.$$

Then, by putting $\lambda_1 = -\lambda_4 = \lambda_5 = \mu_1$, $\lambda_2 = \lambda_6 = \lambda_3 - \frac{1}{2} = \mu_2$, $\lambda_7 = \mu_3$, $\lambda_8 = \mu_4$ in (2.2), we obtain a 4-parametric family of complex symmetric connections ∇'' on a \mathcal{W}_1 -manifold which are defined by

$$\nabla_{x}^{\prime\prime}y = \nabla_{x}y + \frac{1}{2n} \left[\theta(Jx)y + \theta(Jy)x - g(x,y)J\Omega\right] + \frac{1}{n} \left\{ \mu_{1} \left[\theta(x)y + \theta(y)x - \theta(Jx)Jy - \theta(Jy)Jx\right] + \mu_{2} \left[\theta(Jx)y + \theta(Jy)x + \theta(x)Jy + \theta(y)Jx\right] + \mu_{3} \left[g(x,y)\Omega - g(x,Jy)J\Omega\right] + \mu_{4} \left[g(x,Jy)\Omega + g(x,y)J\Omega\right] \right\}.$$

$$(2.3)$$

The well-known Yano connection $[8,9]^*$ on a \mathcal{W}_1 -manifold with Norden metric is obtained from (2.3) for $\mu_1 = \mu_3 = 0$, $\mu_4 = -\mu_2 = \frac{1}{4}$.

^{*[8]} K. Yano, Affine connections in an almost product space, Kodai Math. Semin. Rep. 11(1) (1959), 1–24.
*[9] K. Yano, Differential geometry on complex and almost complex spaces, Pure and Applied Math. vol. 49, Pergamon Press Book, New York, 1965.

Definition 2.2. [2]* A linear connection ∇' on an almost complex manifold with Norden metric (M, J, g) is said to be *natural* if

$$\nabla' J = \nabla' g = 0 \quad \Longleftrightarrow \quad \nabla' g = \nabla' \widetilde{g} = 0.$$

Theorem 2.3. The complex connections ∇' defined by (2.1) and (2.2) are natural on a \mathcal{W}_1 -manifold if and only if

$$\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0, \qquad \lambda_7 = -\lambda_5, \qquad \lambda_8 = -\lambda_6.$$

^{*[2]} G. Ganchev, V. Mihova, Canonical connection and the canonical conformal group on an almost complex manifold with B-metric, Ann. Univ. Sofia Fac. Math. Inform., 81(1) (1987), 195–206.

If we put $\lambda_8 = -\lambda_6 = s$, $\lambda_7 = -\lambda_5 = t$, $\lambda_i = 0$, i = 1, 2, 3, 4, in (2.2) we obtain a 2-parametric family of natural connections ∇''' defined by

$$\nabla_x''' y = \nabla_x y + \frac{1-2\mathbf{s}}{2n} \left[\theta(Jy)x - g(x,y)J\Omega \right] + \frac{1}{n} \left\{ \mathbf{s} \left[g(x,Jy)\Omega - \theta(y)Jx \right] + \mathbf{t} \left[g(x,y)\Omega - g(x,Jy)J\Omega - \theta(y)x + \theta(Jy)Jx \right] \right\}.$$
(2.4)

The well-known canonical connection [2] (or *B*-connection [3]*) on a \mathcal{W}_1 -manifold with Norden metric is obtained from (2.4) for $s = \frac{1}{4}$, t = 0.

^{*[3]} G. Ganchev, K. Gribachev, V. Mihova, *B*-connections and their conformal invariants on conformally Kähler manifolds with *B*-metric, Publ. Inst. Math. (Beograd) (N.S.) 42(56) (1987), 107–121.

We give a summery of the obtained results in the following table

Connection type	Symbol	Parameters
Complex	∇'	$\lambda_i \in \mathbb{R}, \ i = 1, 2, \dots, 8.$
Complex symmetric	abla''	$\mu_{i}, i = 1, 2, 3, 4,$ $\mu_{1} = \lambda_{1} = -\lambda_{4} = \lambda_{5}, \mu_{2} = \lambda_{2} = \lambda_{6} = \lambda_{3} - \frac{1}{2},$ $\mu_{3} = \lambda_{7}, \mu_{4} = \lambda_{8}$
Natural	abla'''	$s,t, s=\lambda_8=-\lambda_6, t=\lambda_7=-\lambda_5, \lambda_i=0, i=1,2,3,4.$

Next, we study the natural connection ∇^0 obtained from (2.4) for s = t = 0, i.e.

$$\nabla_x^0 y = \nabla_x y + \frac{1}{2n} \left[\theta(Jy) x - g(x, y) J\Omega \right].$$
(2.5)

This connection is a semi-symmetric metric connection [10], [6]*. Let $R^0(x, y, z, u) = g(R^0(x, y)z, u)$.

Proposition 2.4. On a \mathcal{W}_1 -manifold with closed Lie 1-form θ^* the Kähler curvature tensor R^0 of ∇^0 has the form

$$R^0 = R - \frac{1}{2n}\psi_1(P),$$

$$P(x,y) = (\nabla_x \theta) Jy + \frac{1}{2n} \theta(x) \theta(y) + \frac{\theta(\Omega)}{4n} g(x,y) + \frac{\theta(J\Omega)}{2n} g(x,Jy).$$

^{*[6]} S. D. Singh, A. K. Pandey, Semi-symmetric metric connections in an almost Norden metric manifold, Acta Cienc. Indica Math. 27(1) (2001), 43–54.
*[10] K. Yano, On semi-symmetric metric connection, Rev. Roumanie Math. Pure Appl. 15 (1970), 1579–1586.

Proposition 2.5. Let (M, J, g) be a \mathcal{W}_1 -manifold with closed Lie 1-form θ^* , and ∇^0 be the natural connection defined by (2.5). Then, the Weyl tensor is invariant by the transformation $\nabla \to \nabla^0$, i.e.

$$W(R^0) = W(R).$$

<u>Remark 2.2</u>. The above statement is a well-known fact for a semisymmetric metric connection.

Let R'(x, y, z, u) = g(R'(x, y)z, u) be the curvature tensor of ∇' , $\lambda_i \in \mathbb{R}, i = 1, 2, ..., 8$. Then, R' is a Kähler tensor on a conformal Kähler manifold with Norden metric iff

$$\lambda_7 = -\lambda_5, \qquad \lambda_8 = -\lambda_6.$$

Theorem 2.6. Let (M, J, g) be a conformal Kähler manifold with Norden metric, and ∇' be the complex connections defined by (2.1) and (2.2). Then R' is a Kähler curvature tensor on M if and only if $\lambda_7 = -\lambda_5$ and $\lambda_8 = -\lambda_6$. In this case from (2.1) and (2.2) we obtain a 6-parametric family of complex connections ∇' whose curvature tensors R' have the form

$$\begin{aligned} R' &= R^0 + \frac{\lambda_7}{n} \left\{ \psi_1 - \psi_2 \right\} (S_1) + \frac{\lambda_8}{n} \left\{ \psi_1 - \psi_2 \right\} (S_2) \\ &+ \frac{\lambda_7 (4\lambda_8 - 1)}{2n^2} \left\{ \psi_1 - \psi_2 \right\} (S_3) + \frac{\lambda_7 (1 - 2\lambda_8)\theta(J\Omega)}{n^2} \left\{ \pi_1 - \pi_2 \right\} \\ &+ \frac{2\lambda_7 \lambda_8 \theta(\Omega)}{n^2} \pi_3, \end{aligned}$$

where R^0 is the curvature tensor of ∇^0 defined by (2.5) and

$$\begin{split} S_1(x,y) &= (\nabla_x \theta) \, y + \frac{\lambda_7}{n} [\theta(x)\theta(y) - \theta(Jx)\theta(Jy)] - \frac{\lambda_7 \theta(\Omega)}{2n} g(x,y) \\ &+ \frac{\lambda_7 \theta(J\Omega)}{2n} g(x,Jy), \end{split}$$

$$\begin{split} S_2(x,y) &= (\nabla_x \theta) \, Jy + \frac{1-2\lambda_8}{2n} [\theta(x)\theta(y) - \theta(Jx)\theta(Jy)] \\ &+ \frac{\lambda_8 \theta(\Omega)}{2n} g(x,y) + \frac{(1-\lambda_8)\theta(J\Omega)}{2n} g(x,Jy), \end{split}$$

 $S_3(x,y) = \theta(x)\theta(Jy) + \theta(Jx)\theta(y).$

Corollary 2.1. Let (M, J, g) be a conformal Kähler manifold with Norden metric and ∇' be the 8-parametric family of complex connections defined by (2.1) and (2.2). Then,

$$R' = R^0$$

if and only if $\lambda_i = 0$ for i = 5, 6, 7, 8.

Corollary 2.2. On a conformal Kähler manifold with Norden metric the Weyl tensor is invariant by the transformation of the Levi-Civita connection in any of the complex connection ∇' defined by (2.1) and (2.2) for $\lambda_i = 0$, i = 5, 6, 7, 8. **Theorem 2.7.** Let (M, J, g) be a conformal Kähler manifold with Norden metric, R' be the curvature tensor of ∇' defined by (2.1) and (2.2) for $\lambda_7 = -\lambda_5$, $\lambda_8 = -\lambda_6$ and R^0 be the curvature tensor of ∇^0 given by (2.5). Then the Bochner tensor is invariant by the transformations $\nabla^0 \to \nabla'$, i.e.

$$B(R') = B(R^0).$$

3. Conformal Transformations of Complex Connections

Let (M, J, g) and (M, J, \overline{g}) be conformally equivalent almost complex manifolds with Norden metric by the transformation $\overline{g} = e^{2u}g$. It is known that the Levi-Civita connections ∇ and $\overline{\nabla}$ of g and \overline{g} , respectively, are related as follows

$$\overline{\nabla}_x y = \nabla_x y + \sigma(x)y + \sigma(y)x - g(x, y)\Theta,$$

$$\sigma(x) = du(x)$$
 and $\Theta = \operatorname{grad} \sigma$, i.e. $\sigma(x) = g(x, \Theta)$.

Lemma 3.1. Let (M, J, g) be an almost complex manifold with Norden metric and (M, J, \overline{g}) be its conformally equivalent manifold by the transformation $\overline{g} = e^{2u}g$. Then the curvature tensors R and \overline{R} of ∇ and $\overline{\nabla}$, respectively, are related as follows

$$\bar{R} = e^{2u} \{ R - \psi_1(V) - \pi_1 \sigma(\Theta) \},\$$

where $V(x, y) = (\nabla_x \sigma) y - \sigma(x) \sigma(y)$.

Let us first study the conformal group of the natural connection ∇^0 given by (2.5).

$$\overline{\nabla}_x^0 y = \nabla_x^0 y + \sigma(x) y.$$

Theorem 3.1. Let (M, J, g) be a \mathcal{W}_1 -manifold with closed Lie 1-form θ^* . Then the curvature tensor R^0 of ∇^0 is conformally invariant, i.e.

$$\bar{R}^0 = e^{2u} R^0.$$

Theorem 3.3. On a conformal Kähler manifold with Norden metric the Bochner curvature tensor of the complex connections ∇' defined by (2.1) and (2.2) with the conditions $\lambda_7 = -\lambda_5$ and $\lambda_8 = -\lambda_6$ is conformally invariant by the transformation $\bar{g} = e^{2u}g$, i.e.

$$B(\bar{R}') = e^{2u}B(R').$$

Remark 3.1. G. Ganchev, K. Gribachev, V. Mihova have proved in [3] such statement for the canonical connection.

Corollary 3.1. Let (M, J, g) be a conformal Kähler manifold with Norden metric and ∇' be a complex connection defined by (2.1) and (2.2). If $\lambda_i = 0$ for i = 5, 6, 7, 8, then the curvature tensor of ∇' is conformally invariant by the transformation $\bar{g} = e^{2u}g$. $(M, J, g) - \mathcal{W}_1$ -manifold with closed 1-form $\theta \circ J$ $\nabla - \text{L.C.}$ $\nabla^0 - \text{S.S.M.C.}$ obtained from (2.1) and (2.2) for $\lambda_i = 0, i = 1, 2, ..., 8$.

(M, J, g) – conformal Kähler manifold with Norden metric ∇' – 6-parametric family of complex connections obtained from (2.1) and (2.2) for $\lambda_7 = -\lambda_5$, $\lambda_8 = -\lambda_6$.

- G. Ganchev, A. Borisov, Note on the almost complex manifolds with a Norden metric, Compt. Rend. Acad. Bulg. Sci. 39(5) (1986), 31-34.
- G. Ganchev, V. Mihova, Canonical connection and the canonical conformal group on an almost complex manifold with Bmetric, Ann. Univ. Sofia Fac. Math. Inform., 81(1) (1987), 195– 206.
- 3. G. Ganchev, K. Gribachev, V. Mihova, B-connections and their conformal invariants on conformally Kähler manifolds with B-metric, Publ. Inst. Math. (Beograd) (N.S.) 42(56) (1987), 107– 121.
- 4. S. Kobayshi, K. Nomizu, Foundations of differential geometry vol. 1, 2, Intersc. Publ., New York, 1963, 1969.

- 5. A. Newlander, L. Nirenberg, *Complex analytic coordinates in almost complex manifolds*, Ann. Math. 65 (1957), 391–404.
- 6. S. D. Singh, A. K. Pandey, Semi-symmetric metric connections in an almost Norden metric manifold, Acta Cienc. Indica Math. 27(1) (2001), 43–54.
- 7. M. Teofilova, Almost complex connections on almost complex manifolds with Norden metric, In: Trends in Differential Geometry, Complex Analysis and Mathematical Physics, eds. K. Sekigawa, V. Gerdjikov and S. Dimiev, World Sci. Publ., Singapore (2009), 231–240.
- K. Yano, Affine connections in an almost product space, Kodai Math. Semin. Rep. 11(1) (1959), 1–24.
- 9. K. Yano, Differential geometry on complex and almost complex spaces, Pure and Applied Math. vol. 49, Pergamon Press Book, New York, 1965.

10. K. Yano, On semi-symmetric metric connection, Rev. Roumanie Math. Pure Appl. 15 (1970), 1579–1586.

