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1. Preliminaries

Let (M,J, g) be a 2n-dimensional almost complex manifold with
Norden metric, i.e. J is an almost complex structure and g is a
pseudo-Riemannian metric on M such that

J2x = −x, g(Jx, Jy) = −g(x, y), x, y ∈ X(M).

The associated metric g̃ of g is given by

g̃(x, y) = g(x, Jy)

and is a Norden metric, too. Both metrics are necessarily of signature
(n, n).



Let∇ be the Levi-Civita connection of the metric g. The fundamental
tensor field F of type (0, 3) on M is defined by

F (x, y, z) = g ((∇xJ)y, z)

and has the following symmetries

F (x, y, z) = F (x, z, y) = F (x, Jy, Jz).

The Lie 1-forms θ and θ∗ associated with F , and the Lie vector Ω,
corresponding to θ, are defined by, respectively

θ(x) = gijF (ei, ej, x), θ∗ = θ ◦ J, θ(x) = g(x,Ω),

where {ei} (i = 1, 2, . . . , 2n) is an arbitrary basis of TpM at a point

p of M , and gij are the components of the inverse matrix of g with
respect to the basis {ei}.



A classification of the almost complex manifolds with Norden met-
ric is introduced by G. Ganchev and A. Borisov in [1]*, where eight
classes of these manifolds are characterized according to the prop-
erties of F . The three basic classes Wi (i = 1, 2, 3) are given by,
respectively

• the class W1:

F (x, y, z) = 1
2n [g(x, y)θ(z) + g(x, Jy)θ(Jz)

+g(x, z)θ(y) + g(x, Jz)θ(Jy)] ;

• the class W2 of the special complex manifolds with Norden met-
ric:

F (x, y, Jz) + F (y, z, Jx) + F (z, x, Jy) = 0, θ = 0;

*[1] G. Ganchev, A. Borisov, Note on the almost complex manifolds with a Norden metric, Compt. Rend.
Acad. Bulg. Sci. 39(5) (1986), 31–34.



• the class W3 of the quasi-Kähler manifolds with Norden met-
ric:

F (x, y, z) + F (y, z, x) + F (z, x, y) = 0.

The special class W0 of the Kähler manifolds with Norden metric
is characterized by the condition F = 0 and is contained in each of
the other classes.

Let R be the curvature tensor of ∇, i.e.

R(x, y)z = ∇x∇yz −∇y∇xz −∇[x,y]z.

The corresponding (0,4)-type tensor is defined by

R(x, y, z, u) = g (R(x, y)z, u) .



A tensor L of type (0,4) is said to be curvature-like if it has the
properties of R, i.e.

L(x, y, z, u) = −L(y, x, z, u) = −L(x, y, u, z),

L(x, y, z, u) + L(y, z, x, u) + L(z, x, y, u) = 0.

The Ricci tensor ρ(L) and the scalar curvatures τ (L) and τ∗(L) of
L are defined by:

ρ(L)(y, z) = gijL(ei, y, z, ej),

τ (L) = gijρ(L)(ei, ej), τ∗(L) = gijρ(L)(ei, Jej).

A curvature-like tensor L is called a Kähler tensor if

L(x, y, Jz, Ju) = −L(x, y, z, u).



Let S be a tensor of type (0,2). We consider the following tensors
[3]*:

ψ1(S)(x, y, z, u) = g(y, z)S(x, u)− g(x, z)S(y, u)

+ g(x, u)S(y, z)− g(y, u)S(x, z),

ψ2(S)(x, y, z, u) = g(y, Jz)S(x, Ju)− g(x, Jz)S(y, Ju)

+ g(x, Ju)S(y, Jz)− g(y, Ju)S(x, Jz),

π1 = 1
2ψ1(g), π2 = 1

2ψ2(g), π3 = −ψ1(g̃) = ψ2(g̃).

ψ1(S) is curvature-like if S is symmetric;
ψ2(S) is curvature-like is S is symmetric and hybrid with respect to
J , i.e. S(x, Jy) = S(y, Jx);
In the last case the tensor {ψ1 − ψ2}(S) is Kählerian.

*[3] G. Ganchev, K. Gribachev, V. Mihova, B-connections and their conformal invariants on conformally Kähler
manifolds with B-metric, Publ. Inst. Math. (Beograd) (N.S.) 42(56) (1987), 107–121.



The usual conformal transformation of the Norden metric g is de-
fined by

g = e2ug,

where u is a pluriharmonic function, i.e. the 1-form du ◦ J is closed.

A W1-manifold with closed Lie 1-forms θ and θ∗ is called a conformal
Kähler manifold with Norden metric.

In [3] it is proved that such a manifold is conformally equivalent
to a Kähler manifold with Norden metric by the usual conformal
transformation. The subclass of these manifolds is denoted by W0

1.



It is known that on a pseudo-Riemannian manifold M
(dimM = 2n ≥ 4) the conformal invariant Weyl tensor has the
form

W (R) = R− 1

2(n− 1)

{
ψ1(ρ)−

τ

2n− 1
π1

}
.

Let L be a Kähler curvature-like tensor on (M,J, g),
dimM = 2n ≥ 6. Then the Bochner tensor B(L) for L is defined
by [3]:

B(L) = L− 1
2(n−2)

{
ψ1 − ψ2

}(
ρ(L)

)
+ 1

4(n−1)(n−2)

{
τ (L)

(
π1 − π2

)
+ τ∗(L)π3

}
.

In [3] it is proved that the Bochner tensor of the canonical connection
is a conformal invariant of the canonical conformal group generated
by the usual conformal transformation on a W0

1-manifold.



2. Complex Connections on W1-manifolds

Definition 2.1. [4]* A linear connection ∇′ on an almost complex
manifold (M,J) is said to be almost complex if ∇′J = 0.

Theorem 2.1. On a W1-manifold with Norden metric there ex-
ists an 8-parametric family of complex connections ∇′ defined
by

∇′xy = ∇xy +Q(x, y) (2.1)

where the deformation tensor Q(x, y) is given by

Q(x, y) = 1
2n [θ(Jy)x− g(x, y)JΩ]

+1
n {λ1θ(x)y + λ2θ(x)Jy + λ3θ(Jx)y + λ4θ(Jx)Jy

+λ5 [θ(y)x− θ(Jy)Jx] + λ6 [θ(y)Jx + θ(Jy)x]

+λ7 [g(x, y)Ω− g(x, Jy)JΩ] + λ8 [g(x, Jy)Ω + g(x, y)JΩ]} ,

(2.2)

λi ∈ R, i = 1, 2, ..., 8.
*[4] S. Kobayshi, K. Nomizu, Foundations of differential geometry vol. 1, 2, Intersc. Publ., New York, 1963,
1969.



Remark 2.1. The 2-parametric family of complex connections ob-
tained for

λ1 = λ4, λ3 = −λ2, λ5 = λ7 = 0, λ8 = −λ6 =
1

4

is studied by us in [7].

Theorem 2.2. The complex connections ∇′ defined by (2.1) and
(2.2) are symmetric on a W1-manifold if and only if

λ1 = −λ4 = λ5, λ2 = λ3 −
1

2
= λ6.



Then, by putting λ1 = −λ4 = λ5 = µ1, λ2 = λ6 = λ3 − 1
2 = µ2,

λ7 = µ3, λ8 = µ4 in (2.2), we obtain a 4-parametric family of complex
symmetric connections ∇′′ on a W1-manifold which are defined by

∇′′xy = ∇xy + 1
2n [θ(Jx)y + θ(Jy)x− g(x, y)JΩ]

+ 1
n {µ1 [θ(x)y + θ(y)x− θ(Jx)Jy − θ(Jy)Jx]

+ µ2 [θ(Jx)y + θ(Jy)x + θ(x)Jy + θ(y)Jx]

+ µ3 [g(x, y)Ω− g(x, Jy)JΩ] + µ4 [g(x, Jy)Ω + g(x, y)JΩ]} .

(2.3)

The well-known Yano connection [8,9]* on a W1-manifold with Nor-
den metric is obtained from (2.3) for µ1 = µ3 = 0, µ4 = −µ2 = 1

4.

*[8] K. Yano, Affine connections in an almost product space, Kodai Math. Semin. Rep. 11(1) (1959), 1–24.
∗ [9] K. Yano, Differential geometry on complex and almost complex spaces, Pure and Applied Math. vol. 49,
Pergamon Press Book, New York, 1965.



Definition 2.2. [2]* A linear connection ∇′ on an almost complex
manifold with Norden metric (M,J, g) is said to be natural if

∇′J = ∇′g = 0 ⇐⇒ ∇′g = ∇′g̃ = 0.

Theorem 2.3. The complex connections ∇′ defined by (2.1) and
(2.2) are natural on a W1-manifold if and only if

λ1 = λ2 = λ3 = λ4 = 0, λ7 = −λ5, λ8 = −λ6.

*[2] G. Ganchev, V. Mihova, Canonical connection and the canonical conformal group on an almost complex
manifold with B-metric, Ann. Univ. Sofia Fac. Math. Inform., 81(1) (1987), 195–206.



If we put λ8 = −λ6 = s, λ7 = −λ5 = t, λi = 0, i = 1, 2, 3, 4, in (2.2)
we obtain a 2-parametric family of natural connections ∇′′′ defined
by

∇′′′x y = ∇xy + 1−2s
2n [θ(Jy)x− g(x, y)JΩ]

+ 1
n {s [g(x, Jy)Ω− θ(y)Jx]

+t [g(x, y)Ω− g(x, Jy)JΩ− θ(y)x + θ(Jy)Jx]} .

(2.4)

The well-known canonical connection [2] (or B-connection [3]*) on a
W1-manifold with Norden metric is obtained from (2.4) for s = 1

4,
t = 0.

*[3] G. Ganchev, K. Gribachev, V. Mihova, B-connections and their conformal invariants on conformally Kähler
manifolds with B-metric, Publ. Inst. Math. (Beograd) (N.S.) 42(56) (1987), 107–121.



We give a summery of the obtained results in the following table

Connection type Symbol Parameters
Complex ∇′ λi ∈ R, i = 1, 2, ..., 8.

Complex

symmetric
∇′′

µi, i = 1, 2, 3, 4,

µ1 = λ1 = −λ4 = λ5, µ2 = λ2 = λ6 = λ3 − 1
2,

µ3 = λ7, µ4 = λ8

Natural ∇′′′
s, t,

s = λ8 = −λ6, t = λ7 = −λ5,

λi = 0, i = 1, 2, 3, 4.



Next, we study the natural connection ∇0 obtained from (2.4) for
s = t = 0, i.e.

∇0
xy = ∇xy + 1

2n [θ(Jy)x− g(x, y)JΩ] . (2.5)

This connection is a semi-symmetric metric connection [10], [6]*.

Let R0(x, y, z, u) = g(R0(x, y)z, u).

Proposition 2.4. On a W1-manifold with closed Lie 1-form θ∗

the Kähler curvature tensor R0 of ∇0 has the form

R0 = R− 1

2n
ψ1(P ),

P (x, y) = (∇xθ) Jy +
1

2n
θ(x)θ(y) +

θ(Ω)

4n
g(x, y) +

θ(JΩ)

2n
g(x, Jy).

*[6] S. D. Singh, A. K. Pandey, Semi-symmetric metric connections in an almost Norden metric manifold, Acta
Cienc. Indica Math. 27(1) (2001), 43–54.
*[10] K. Yano, On semi-symmetric metric connection, Rev. Roumanie Math. Pure Appl. 15 (1970), 1579–1586.



Proposition 2.5. Let (M,J, g) be a W1-manifold with closed Lie

1-form θ∗, and ∇0 be the natural connection defined by (2.5).
Then, the Weyl tensor is invariant by the transformation
∇ → ∇0, i.e.

W (R0) = W (R).

Remark 2.2. The above statement is a well-known fact for a semi-
symmetric metric connection.

Let R′(x, y, z, u) = g(R′(x, y)z, u) be the curvature tensor of ∇′,
λi ∈ R, i = 1, 2, ..., 8. Then, R′ is a Kähler tensor on a conformal
Kähler manifold with Norden metric iff

λ7 = −λ5, λ8 = −λ6.



Theorem 2.6. Let (M,J, g) be a conformal Kähler manifold
with Norden metric, and ∇′ be the complex connections defined
by (2.1) and (2.2). Then R′ is a Kähler curvature tensor on M if
and only if λ7 = −λ5 and λ8 = −λ6. In this case from (2.1) and
(2.2) we obtain a 6-parametric family of complex connections ∇′
whose curvature tensors R′ have the form

R′ = R0 + λ7
n {ψ1 − ψ2} (S1) + λ8

n {ψ1 − ψ2} (S2)

+
λ7(4λ8−1)

2n2 {ψ1 − ψ2} (S3) +
λ7(1−2λ8)θ(JΩ)

n2 {π1 − π2}

+
2λ7λ8θ(Ω)

n2 π3,

where R0 is the curvature tensor of ∇0 defined by (2.5) and



S1(x, y) = (∇xθ) y + λ7
n [θ(x)θ(y)− θ(Jx)θ(Jy)]− λ7θ(Ω)

2n g(x, y)

+
λ7θ(JΩ)

2n g(x, Jy),

S2(x, y) = (∇xθ) Jy + 1−2λ8
2n [θ(x)θ(y)− θ(Jx)θ(Jy)]

+
λ8θ(Ω)

2n g(x, y) +
(1−λ8)θ(JΩ)

2n g(x, Jy),

S3(x, y) = θ(x)θ(Jy) + θ(Jx)θ(y).



Corollary 2.1. Let (M,J, g) be a conformal Kähler manifold

with Norden metric and ∇′ be the 8-parametric family of complex
connections defined by (2.1) and (2.2). Then,

R′ = R0

if and only if λi = 0 for i = 5, 6, 7, 8.

Corollary 2.2. On a conformal Kähler manifold with Norden
metric the Weyl tensor is invariant by the transformation of the
Levi-Civita connection in any of the complex connection ∇′ de-
fined by (2.1) and (2.2) for λi = 0, i = 5, 6, 7, 8.



Theorem 2.7. Let (M,J, g) be a conformal Kähler manifold
with Norden metric, R′ be the curvature tensor of ∇′ defined
by (2.1) and (2.2) for λ7 = −λ5, λ8 = −λ6 and R0 be the cur-
vature tensor of ∇0 given by (2.5). Then the Bochner tensor is
invariant by the transformations ∇0 → ∇′, i.e.

B(R′) = B(R0).



3. Conformal Transformations of Complex Connections

Let (M,J, g) and (M,J, ḡ) be conformally equivalent almost complex
manifolds with Norden metric by the transformation ḡ = e2ug. It
is known that the Levi-Civita connections ∇ and ∇ of g and ḡ,
respectively, are related as follows

∇xy = ∇xy + σ(x)y + σ(y)x− g(x, y)Θ,

σ(x) = du(x) and Θ = gradσ, i.e. σ(x) = g(x,Θ).

Lemma 3.1. Let (M,J, g) be an almost complex manifold with
Norden metric and (M,J, ḡ) be its conformally equivalent mani-
fold by the transformation ḡ = e2ug. Then the curvature tensors
R and R̄ of ∇ and ∇, respectively, are related as follows

R̄ = e2u
{
R− ψ1

(
V

)
− π1σ

(
Θ

)}
,

where V (x, y) =
(
∇xσ

)
y − σ(x)σ(y).



Let us first study the conformal group of the natural connection ∇0

given by (2.5).

∇0
xy = ∇0

xy + σ(x)y.

Theorem 3.1. Let (M,J, g) be a W1-manifold with closed Lie
1-form θ∗. Then the curvature tensor R0 of ∇0 is conformally
invariant, i.e.

R̄0 = e2uR0.



Theorem 3.3. On a conformal Kähler manifold with Norden
metric the Bochner curvature tensor of the complex connections
∇′ defined by (2.1) and (2.2) with the conditions λ7 = −λ5 and
λ8 = −λ6 is conformally invariant by the transformation
ḡ = e2ug, i.e.

B(R̄′) = e2uB(R′).

Remark 3.1. G. Ganchev, K. Gribachev, V. Mihova have proved
in [3] such statement for the canonical connection.

Corollary 3.1. Let (M,J, g) be a conformal Kähler manifold

with Norden metric and ∇′ be a complex connection defined by
(2.1) and (2.2). If λi = 0 for i = 5, 6, 7, 8, then the curvature
tensor of ∇′ is conformally invariant by the transformation
ḡ = e2ug.



(M,J, g) – W1-manifold with closed 1-form θ ◦ J
∇ – L.C.
∇0 – S.S.M.C. obtained from (2.1) and (2.2) for λi = 0, i = 1, 2, ..., 8.



(M,J, g) – conformal Kähler manifold with Norden metric

∇′ – 6-parametric family of complex connections obtained from (2.1)
and (2.2) for λ7 = −λ5, λ8 = −λ6.
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