

MICROWAVE-ASSISTED **HEADSPACE IONIC LIQUID SINGLE DROP MICROEXTRATION OF CHLOROBENZENES FROM** WATER SAMPLES

Antonio Canals Hernández December 2006, Plovdiv, Bulgaria

I. Introduction

II. Microextraction

III.Microwaves

IV.Experimental

I. Introduction

II. Microextraction

III.Microwaves

IV.Experimental

1,3-Dichlorobenzene (1,3-DCB) 1,4-Dichlorobenzene (1,4-DCB) 1,2-Dichlorobenzene (1,2-DCB) 1,3,5-Trichlorobenzene (1,3,5-TCB) 1,2,4-Trichlorobenzene (1,2,4-TCB) 1,2,3-Trichlorobenzene (1,2,3-TCB) 1,2,4,5-Tetrachlorobenzene (1,2,4,5-TeCB) 1,2,3,4-Tetrachlorobenzene (1,2,3,4-TeCB)

I. Introduction

II. Microextraction

III.Microwaves

IV.Experimental

Microextraction methods

Miniaturized extraction methods

- ✓ Solid-phase microextracion (SPME)
- ✓ Liquid-phase microextraction (LPME)
- ✓ Single-drop microextraction (SDME)
- Fast
- Easy
- Economical
- High preconcentration factor
- Virtually organic solvents free

Single drop microextraction (SDME)

- Miniaturization of liquid-liquid extraction
- The extractant phase (drop) could be an organic solvent or an ionic liquid
- Modes:
 - Direct immersion (SDME)
 - Headspace (HS-SDME)

Direct immersion

Headspace

I. Introduction

II. Microextraction

III.Microwaves

IV.Experimental

- © To facilitate HS-SDME, high temperatures may be required to enhance the release of analytes into the headspace.
- Bigh-temperature extraction may also cause significant deterioration of the drop/sample distribution coefficient.

How does microwave electromagnetic radiation interact with a sample?

- Microwaves are electromagnetic energy that can speed up the molecular movement.
- This movement mainly occurs due to ion migration and dipole rotation.
- The movement of molecules in a fluid is a measure of its kinetic energy.

I. Introduction

II. Microextraction

III.Microwaves

IV. Experimental

Introduction

Microextraction

Microwaves

Experimental

Results and discussion

Instrumentation

Microwave oven: Domestic Samsung M1711N (2450 MHz, 800W)

 HPLC System: Waters multisolvent pump and Waters 996
Photodiode Array Detector (PDA) set at 210 nm (Waters, Milford, MA, USA)

 Column: Luna C18 (250 x 4.6 mm, 5 μm) from Phenomenex (Torance, USA)

Precolumn: Luna C18 (4 x 3 mm)

Separation conditions

- Mobile phase: Acetonitrile-water 65:35 (v/v)
- Flow-rate: 1 mL min⁻¹

Microwave heating

A 9-min microwave heating at 200 W and a 20-min total extraction time (i.e., heating cycles of 30 seconds) are employed.

A 3 mm long PTFE tube is fitted to the blunt tip of a 25 μ L Hamilton Gastight syringe. The microsyringe typically containing the appropriate ionic liquid is clamped above tube.

I. Introduction

II. Microextraction

III.Microwaves

IV.Experimental

Optimization

SCREENING

Experimental variables and levels of a Plackett-Burman design

Variable	Level			
	Low	High		
Ionic strength (NaCl concentration; w/v):	0	30		
Drop volume (μL)	5	8		
Sample volume (mL)	10	30		
Extraction time (min)	10	20		
Stirring speed (rpm)	0	300		
Ionic liquid type	[C ₄ MIM][PF ₆]	[C ₆ MIM][PF ₆]		
MW power (W)	100	200		
Tube length (cm)	25	34		

Introduction

Microextraction

Microwaves

Experimental

Results and discussion

NON-INFLUENTIAL VARIABLES

Ionic strength (NaCl concentration; w/v): 0 % Drop volume: 5 μL Stirring speed: 0 rpm MW Power: 200 W Tube length: 25 cm

INFLUENTIAL VARIABLES Sample volume Extraction time Ionic liquid type

FACTORIAL DESIGN

Experimental variables and levels of a Mixed-Level Factorial design

Variable	Level						
	Lower	Central	Upper				
Sample volume (mL)	10	20	30				
Extraction time (min)	10	15	20				
Ionic liquid type	[C ₄ MIM][PF ₆]	-	[C ₆ MIM][PF ₆]				

Optimization

FACTORIAL DESIGN

Optimum conditions

Ionic liquid: [C₆MIM] [PF₆] 1-hexyl-3-methylimidazolium hexaflurophosphate

Drop volume: 5 µL

Extraction time: 20 minutes

Sample volume: 30 mL

Microwave power: 200 W

Glass Y-tube length: 25 cm

Stirring speed: 0 rpm

Ionic strength (NaCl concentration; w/v): 0 %

Validation

Analyte	Slope	Intercept	Correlation Coefficient (r) ^a	RSD (%) ^b	LOD (µg L ⁻¹) ^c	LOQ (µg L ⁻¹) ^d
1,2-DCB	0.10753 ± 0.00079	0.08 ± 0.11	0.9998	2.7	0.024	0.081
1,4-DCB	0.06688 ± 0.00052	-0.031 ± 0.072	0.9998	2.3	0.039	0.130
1,3-DCB	0.09512 ± 0.00033	-0.042 ± 0.045	0.9999	2.9	0.032	0.108
1,2,3-TCB	0.1993 ± 0.0016	-0.42 ± 0.20	0.9998	5.7	0.016	0.054
1,2,4-TCB	0.1685 ± 0.0026	0.20 ± 0.36	0.9995	5.6	0.022	0.072
1,3,5-TCB	0.2182 ± 0.0015	-0.20 ± 0.20	0.9998	3.8	0.022	0.072
1,2,3,4-TeCB	0.2684 ± 0.0017	-0.30 ± 0.22	0.9998	8.3	0.016	0.054
1,2,4,5-TeCB	0.3612 ± 0.0037	0.79 ± 0.52	0.9996	7.1	0.016	0.054

^a Linear range: 1-320 μ g L⁻¹ (number of calibration points = 9).

^b Relative standard deviation (RSD); mean value for five replicate analyses; spiking level 40 µg L⁻¹.

- ^c Limits of detection (LODs) calculated using a S/N = 3 criterion.
- ^d Limits of quantification (LOQs) calculated using a S/N = 10 criterion.

Validation

Analyte	Repeatability RSD (%)		LOD (µg L ⁻¹) ^c			LOQ (µg L ⁻¹) ^d			
	No MW ^a	MW ^b		No MW	MW		No MW	MW	
1,2-DCB	5.1	2.7	_	0.102	0.024		0.338	0.081	
1,4-DCB	2.3	2.3		0.203	0.039		0.677	0.130	
1,3-DCB	5.0	2.9		0.152	0.032		0.508	0.108	
1,2,3-TCB	1.6	5.7		0.102	0.016		0.338	0.054	
1,2,4-TCB	3.4	5.6		0.122	0.022		0.406	0.072	
1,3,5-TCB	4.1	3.8		0.122	0.022		0.406	0.072	
1,2,3,4-TeCB	3.1	8.3		0.102	0.016		0.338	0.054	
1,2,4,5-TeCB	3.0	7.1		0.102	0.016		0.338	0.054	

^a Relative standard deviation (RSD); mean value for five replicate analyses; spiking level 20 µg L⁻¹

^b Relative standard deviation (RSD); mean value for five replicate analyses; spiking level 40 µg L⁻¹.

^c Limits of detection (LODs) calculated using a S/N = 3 criterion.

^d Limits of quantification (LOQs) calculated using a S/N = 10 criterion.

Matrix effects

Analyte	Relative recoveries (%) and RSD values (%) in parentheses ^a								
	Tap water			River water			Effluent water		
	No MW	MW		No MW	MW		No MW	MW	
1,2-DCB	97.3 (4.2)	96.2 (1.8)		101.1 (5.8)	100.9 (4.0)		114.1 (3.2)	88.6 (7.4)	
1,4-DCB	98.0 (3.1)	91.4 (5.2)		100.5 (1.9)	98.1 (5.9)		120.6 (2.4)	83.7 (11.3)	
1,3-DCB	100.9 (6.5)	96.2 (3.7)		106.6 (3.1)	99.0 (5.9)		112.1 (3.8)	82.9 (12.0)	
1,2,3-TCB	96.0 (1.3)	100.1 (2.1)		101.0 (2.1)	99.7 (2.3)		86.0 (2.8)	94.9 (1.7)	
1,2,4-TCB	96.5 (1.7)	103.9 (5.6)		99.3 (2.5)	101.4 (3.3)		89.5 (5.1)	90.8 (5.0)	
1,3,5-TCB	94.1 (2.0)	101.3 (5.8)		101.2 (4.5)	99.7 (4.1)		83.2 (4.4)	81.7 (11.7)	
1,2,3,4-TeCB	95.9 (2.8)	102.5 (4.4)		101.6 (3.9)	105.5 (6.1)	1	60.8 (6.6)	98.9 (4.4)	
1,2,4,5-TeCB	96.8 (2.8)	101.7 (3.4)		106.1 (3.1)	100.2 (3.0)		66.0 (6.8)	93.3 (1.8)	

^a Five replicate analyses at a 40 μ g L⁻¹ spiking level

- MA-HS-IL-SDME has been developed via on-line combination of microwave heating and SDME for extraction of chlorobenzenes from water samples. The devices employed are simple in design and easily obtainable.
- The multivariate optimization strategy used allows the successful/fast determination of the optimum conditions for the main operational parameters taken into consideration during MA-HS-IL-SDME.
- The results have proven the applicability of the proposed method to analyze chlorobenzenes in water samples with the advantages of being fast, sensitive, low-cost, and freedom from use of toxic organic solvents, representing an excellent alternative to traditional and other, recently introduced, methods.

Acknowledgements

- Spanish Ministry of Education and Science: DPI2002-04305-C02-01
 PTR1995-0882-OP-02-01
 CTQ2005-09079-C03-01/BQU
 CAL03-078-C3-2
- COST programme (Action D32, working group D32/005/04, "Microwaves and Ultrasound Activation in Chemical Analysis")
- Department of Analytical Chemistry and Food Science, University of Alicante
- "Vicerrectorado de Investigación, Desarrollo e Innovación" of University of Alicante

