
Section 12

Strings, Time, Base Conversion and
Bit Operations

12.1 Character Strings

While Matlab is primarily intended for number crunching, there are times when it is desirable to
manipulate text, as is needed in placing labels and titles on plots. In Matlab, text is referred to
as character strings or simply strings.

String Construction

Character strings in Matlab are special numerical arrays of ASCII values that are displayed as
their character string representation. For example:

>> text = ’This is a character string’
text =
This is a character string
>> size(text)
ans =

1 26
>> whos

Name Size Bytes Class

ans 1x2 16 double array
text 1x26 52 char array

Grand total is 28 elements using 68 bytes

239



ASCII Codes

Each character in a string is one element in an array that requires two bytes per character for
storage, using the ASCII code. This differs from the eight bytes per element required for numerical
or double arrays. The ASCII codes for the letters ‘A’ to ‘Z’ are the consecutive integers from 65
to 90, while the codes for ‘a’ to ‘z’ are 97 to 122. The function abs returns the ASCII codes for a
string.

>> text = ’This is a character string’
text =
This is a character string
>> d = abs(text)
d =

Columns 1 through 12
84 104 105 115 32 105 115 32 97 32 99 104

Columns 13 through 24
97 114 97 99 116 101 114 32 115 116 114 105

Columns 25 through 26
110 103

The function char performs the inverse transformation, from ASCII codes to a string:

>> char(d)
ans =
This is a character string

The relationship between strings and their ASCII codes allow you to do the following:

>> alpha = abs(’a’):abs(’z’);
>> disp(char(alpha))
abcdefghijklmnopqrstuvwxyz

Strings are Arrays

Since strings are arrays, they can be manipulated with array manipulation tools:

>> text = ’This is a character string’;
>> u = text(11:19)
u =
character

As with matrices, character strings can have multiple rows, but each row must have an equal
number of columns. Therefore, blanks are explicitly required to make all rows the same length.
For example:

240



>> v = [’Character strings having more than’
’one row must have the same number ’
’of columns - just like matrices ’]

v =
Character strings having more than
one row must have the same number
of columns - just like matrices
>> size(v)
ans =

3 34

Concatenation of Strings

Because strings are arrays, they may be concatenated (joined) with square brackets. For example:

>> today = ’May’;
>> today = [today, ’ 18’]
today =
May 18

String Conversions

char(x) Converts the array x that contains positive integers representing
character codes into a character array (the first 127 codes are ASCII).
The result for any elements of x outside the range from 0 to 65535
is not defined.

int2str(x) Rounds the elements of the matrix x to integers and converts the
result into a string matrix.

num2str(x) Converts the matrix x into a string representation with about 4 digits
and an exponent if required. This is useful for labeling plots with
the title, xlabel, ylabel, and text commands.

str2num(s) Converts the string s, which should be an ASCII character repre-
sentation of a numeric value, to numeric representation. The string
may contain digits, a decimal point, a leading + or - sign, an ’e’
preceeding a power of 10 scale factor, and an ’i’ for a complex unit.

The num2str function can be used to convert numerical results into strings for use in formating
displayed results with disp. For example, consider the following portion of a script:

tg = 2.2774;
xg = 144.6364;
disp([’time of flight: ’ num2str(tg) ’ s’])
disp([’distance traveled : ’ num2str(xg) ’ ft’])

The arguments for each of the disp commands are vectors of strings, with the first element being
a label, the second being a number converted to a string, and the third being the units of the

241



quantity. The label, the numerical results, and the units are displayed on one line, which was not
possible with other forms of the use of disp:

time of flight: 2.2774 s
distance traveled: 144.6364 ft

242



String Functions

blanks(n) Returns a string of n blanks. Used with disp, eg. disp
([’xxx’ blanks(20) ’yyy’]). disp(blanks(n)’) moves
the cursor down n lines.

deblank(s) Removes trailing blanks from string s.
eval(s) Execute the string s as a Matlab expression or statement.
eval(s1,s2) Provides the ability to catch errors. Executes string s1 and

returns if the operation was successful. If the operation gen-
erates an error, string s2 is evaluated before returning. This
can be thought of as eval(’try’,’catch’).

findstr(s1,s2) Find one string within another. Returns the starting indices
of any occurrences of the shorter of the two strings in the
longer.

ischar(s) Returns 1 if s is a character array and 0 otherwise.
isletter(s) Returns 1 for each element of character array s containing

letters of the alphabet and 0 otherwise.
isspace(s) Returns 1 for each element of character s containing white

space characters and 0 otherwise. White space characters
are spaces, newlines, carriage returns, tabs, vertical tabs, and
formfeeds.

lasterr Returns a string containing the last error message issued.
lasterr is usually used in conjunction with the two argument
form of eval: eval(’try’,’catch’). The ’catch’ action can
examine the lasterr string to determine the cause of the
error and take appropriate action.

lower(s) Converts any uppercase characters in string s to the corre-
sponding lowercase character and leaves all other characters
unchanged.

strcat(s1,s2,s3,...) Horizontally concatenates corresponding rows of the charac-
ter arrays s1, s2, s3 etc. The trailing padding is ignored. All
the inputs must have the same number of rows (or any can
be a single string). When the inputs are all character arrays,
the output is also a character array.

strcmp(s1,s2) Returns 1 if strings s1 and s2 are identical and 0 otherwise.
strjust(s) Returns a right justified version of the character array s.
strmatch(str,strs) Searches through the rows of the character array of strings

strs to find strings that begin with string str, returning the
matching row indices.

strncmp(s1,s2,n) Returns 1 if the first n characters of the strings s1 and s2 are
identical and 0 otherwise.

strrep(s1,s2,s3) Replaces all occurrences of the string s2 in string s1 with the
string s3. The new string is returned.

upper(s) Converts any lower case characters in s to the correspond-
ing upper case character and leaves all other characters un-
changed.

243



12.2 Time Computations

Current Date and Time

Three formats are supported for dates:

clock Returns a six element date vector vector containing the current
time and date in decimal form: [year month day hour minute
seconds]. The first five elements are integers. The seconds element
is accurate to several digits beyond the decimal point.

date Returns a string containing the date in dd-mmm-yyyy format.
now Returns the current date and time as a serial date number.

Examples:

>> t = clock
t =

1998 6 10 10 18 59.57
>> date
ans =
10-Jun-1998
>> format long
>> d = now
d =

7.299164376449074e+005

The date number can be converted to a string with the datestr function:

datestr(d,dateform): Converts a data number d (such as that returned by now) into a date
string. The string is formatted according to the format number dateform (see table below). By
default, dateform is 1, 16, or 0 depending on whether d contains dates, times or both.

244



dateform Date format Example
0 ’dd-mmm-yyyy HH:MM:SS’ 01-Mar-1995 15:45:17
2 ’mm/dd/yy’ 03/01/95
3 ’mmm’ Mar
4 ’m’ M
5 ’mm’ 3
6 ’mm/dd’ 03/01
7 ’dd’ 1
8 ’ddd’ Wed
9 ’d’ W
10 ’yyyy’ 1995
11 ’yy’ 95
12 ’mmmyy’ Mar95
13 ’HH:MM:SS’ 15:45:17
14 ’HH:MM:SS PM’ 3:45:17 PM
15 ’HH:MM’ 15:45
16 ’HH:MM PM’ 3:45 PM
17 ’QQ-YY’ Q1-96
18 ’QQ’ Q1

Examples:

>> ds = datestr(d)
ds =
10-Jun-1998 10:30:13
>> datestr(d,14)
ans =
10:30:13 AM

The function datenum is used to compute a date number. It has three forms:

datenum(s): Returns the date number corresponding to the date string s.

datenum(year,month,day): Returns the date number corresponding to the specified year, month,
and day.

datenum(year,month,day,hour minute,second): Returns the date number corresponding to the
specified year, month, day, hour, minute, and second.

Examples:

>> datenum(ds)
ans =

7.299164376504630e+005
>> datenum(1998,6,13)
ans =

729919

245



>> datenum(1998,6,16,10,30,00)
ans =

7.299224375000000e+005

Date Functions

The day of the week may be found from a date string or a date number using weekday, using the
convention that Sunday = 1 and Saturday = 7.

>> [d s] = weekday(’9/9/90’)
d =

1
s =
Sun

A calendar can be generated for a desired month, for display in the Command window or to be
placed in a 6-by-7 array.

>> calendar(’9/9/90’)
Sep 1990

S M Tu W Th F S
0 0 0 0 0 0 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 0 0 0 0 0 0

>> a = calendar(1978,6)
a =

0 0 0 0 1 2 3
4 5 6 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 0
0 0 0 0 0 0 0

Timing Functions

The functions tic and toc are used to time a sequence of commands. tic starts the timer; toc
stops the timer and displays the elapsed time in seconds.

Example:

tic

246



for t=1:5000
y(t)=sin(2*pi*t/10);

end
toc

Executing:

elapsed_time =
4.5100

cputime returns the amount of central processing unit (CPU) time in seconds since the current
session was started. Computing processing times at various points in a script and taking differences
can be used to determine the CPU time required for segments of the script, possibly locating
portions of the code that could be rewritten to decrease the total computation time.

12.3 Base Conversions and Bit Operations

Base Conversion

Matlab provides functions for converting decimal numbers to other bases in the form of character
strings. These conversion functions include:

dec2bin(d) Returns the binary representation of d as a string. d must be a
non-negative integer smaller than 252.

dec2bin(d,N) Produces a binary representation with at least N bits.
bin2dec(b) Interprets the binary string b and returns the equivalent decimal

number.
dec2hex(d) Returns the hexadecimal representation of decimal integer d as a

string. d must be a non-negative integer smaller than 252.
hex2dec(h) Interprets the hexadecimal string h and returns the equivalent dec-

imal number. If h is a character array, each row is interpreted as a
hexadecimal string.

dec2base(d,b) Returns the representation of d as a string in base b. d must be
a non-negative integer smaller than 252 and b must be an integer
between 2 and 36.

dec2base(d,b,N) Produces a representation with at least N digits.

Examples:

>> a = dec2bin(18) % find binary representation of 18
a =
10010
>> bin2dec(a) % convert a back to decimal
ans =

18

247



>> b = dec2hex(30) % hex representation of 30
b =
1E
>> hex2dec(b) % convert b back to decimal
ans =

30
>> c = dec2base(30,4) % 30 in base 4
c =
132
>> base2dec(c,4) % convert c back to decimal
ans =

30

Bit Operations

Matlab provides functions to implement logical operations on the individual bits of floating-point
integers. The Matlab bitwise functions operate on integers between 0 and bitmax, which is
253 − 1 = 9.0072× 1015:

c = bitand(a,b) Returns the bit-wise AND of the two arguments a and b.
c = bitor(a,b) Returns the bit-wise OR of the two arguments a and b.
c = bitxor(a,b) Returns the bit-wise exclusive OR of the two arguments a and b.
c = bitcmp(a,N) Returns the bit-wise complement of a as an N-bit non-negative inte-

ger.
c = bitset(a,bit,v) Sets the bit at position bit to the value v, where v must be either 0

or 1.
c = bitget(a,bit) Returns the value of the bit at position bit in a. a must contain

non-negative integers and bit must be a number between 1 and the
number of bits in a floating point integer (52 for IEEE machines).

c = bitshift(a,N) Returns the value of a shifted by N bits. If N > 0, this is same as
a multiplication by 2N (left shift). If N < 0, this is the same as a
division by 2^(-N) (right shift).

Examples of the use of these functions are best understood by displaying the results of each oper-
ation by dec2bin:

>> a = 6;
>> b = 10;
>> dec2bin(a,4)
ans =
0110
>> dec2bin(b,4)
ans =
1010
>> dec2bin(bitand(a,b),4)
ans =
0010

248



>> dec2bin(bitor(a,b),4)
ans =
1110
>> dec2bin(bitxor(a,b),4)
ans =
1100
>> dec2bin(bitcmp(a,4),4)
ans =
1001
>> dec2bin(bitset(a,4,1),4)
ans =
1110
>> bitget(a,2)
ans =

1
>> dec2bin(bitshift(a,1))
ans =
1100

249



Section 13

Symbolic Processing

We have focused on the use of Matlab to perform numerical operations, involving numerical data
represented by double precision floating point numbers. We also given some consideration to the
manipulation of text, represented by character strings. In this section, we introduce the use of
Matlab to perform symbolic processing to manipulate mathematical expressions, in much the way
that we do with pencil and paper.

The objective of symbolic processing is to obtain what are known as closed form solutions, ex-
pressions that don’t need to be iterated or updated in order to obtain answers. An understanding
of these solutions often provides better physical and mathematical insight into the problem under
investigation.

For more information, type help symbolic in Matlab. A tutorial demonstration is available with
the command symintro.

The following notes represent a short introduction to the symbolic processing capabilities of Mat-
lab.

13.1 Symbolic Expressions and Algebra

To introduce symbolic processing, first consider the handling of symbolic expressions and the ma-
nipulation of algebra.

Declaring Symbolic Variables and Constants

To enable symbolic processing, the variables and constants involved must first be declared as
symbolic objects.

For example, to create the symbolic variables with names x and y:

>> syms x y

250



If x and y are to be assumed to be real variables, they are created with the command:

>> syms x y real

To declare symbolic constants, the sym function is used. Its argument is a string containing the name
of a special variable, a numeric expression, or a function evaluation. It is used in an assignment
statement which serves as a declaration of a symbolic variable for the assigned variable. Examples
include:

>> pi = sym(’pi’);
>> delta = sym(’1/10’);
>> sqroot2 = sym(’sqrt(2)’);

If the symbolic constant pi is created this way, it replaces the special variable pi in the workspace.
The advantage of using symbolic constants is that they maintain full accuracy until a numeric
evaluation is required.

Symbolic variables and constants are represented by the data type symbolic object. For example, as
displayed by the function whos for the symbolic variables and constants declared in the commands
above:

>> whos
Name Size Bytes Class

delta 1x1 132 sym object
pi 1x1 128 sym object
sqroot2 1x1 138 sym object
x 1x1 126 sym object
y 1x1 126 sym object

Grand total is 20 elements using 650 bytes

Symbolic Expressions

Symbolic variables can be used in expressions and as arguments of functions in much the same way
as numeric variables have been used. The operators + - * / ^ and the built-in functions can
also be used in the same way as they have been used in numeric calculations. For example:

>> syms s t A
>> f = s^2 + 4*s + 5
f =
s^2+4*s+5
>> g = s + 2
g =
s+2

251



>> h = f*g
h =
(s^2+4*s+5)*(s+2)
>> z = exp(-s*t)
z =
exp(-s*t)
>> y = A*exp(-s*t)
y =
A*exp(-s*t)

The symbolic variables s, t, and A are first declared, then used in symbolic expressions to create the
symbolic variables f, g, h, z, and y. The displayed results show that the created variables remain
as symbolic objects, rather than being evaluated numerically. Symbolic processing doesn’t seem
to obey the format compact command, as the displayed output is always double-spaced. These
blank lines have been removed from these notes to conserve paper.

The variable x is the default independent variable, but as can be seen with the expressions above,
other variables can be specified to be the independent variable. It is important to know which
variable is the independent variable in an expression. The command to find the independent
variable is:

findsym(S) Finds the symbolic variables in a symbolic expression or matrix S by re-
turning a string containing all of the symbolic variables appearing in S. The
variables are returned in alphabetical order and are separated by commas.
If no symbolic variables are found, findsym returns the empty string.

Examples based on the declarations and expressions in the examples above are:

>> findsym(f)
ans =
s
>> findsym(z)
ans =
A, s, t

The vector and matrix notation used in Matlab also applies to symbolic variables. For example,
the symbolic matrix B can be created with the commands:

>> n = 3;
>> syms x
>> B = x.^((0:n)’*(0:n))
B =
[ 1, 1, 1, 1]
[ 1, x, x^2, x^3]
[ 1, x^2, x^4, x^6]
[ 1, x^3, x^6, x^9]

252



Manipulating Polynomial Expressions

In the examples above, symbolic variables were declared and were used in symbolic expressions to
create polynomials. We now wish to manipulate these polynomial expressions algebraically.

The Matlab commands for this purpose include:

expand(S) Expands each element of a symbolic expression S as a product of its
factors. expand is most often used on polynomials, but also expands
trigonometric, exponential and logarithmic functions.

factor(S) Factors each element of the symbolic matrix S.

simplify(S) Simplifies each element of the symbolic matrix S.

[n,d] = numden(S) Returns two symbolic expressions that represent the numerator ex-
pression num and the denominator expression den for the rational
representation of the symbolic expression S.

subs(S,old,new) Symbolic substitution, replacing symbolic variable old with symbolic
variable new in the symbolic expression S.

These commands can be used to implement symbolic polynomial operations that were previously
considered as numeric operations in Section 7.2 of these notes.

• Addition:

>> syms s
>> A = s^4 -3*s^3 -s +2;
>> B = 4*s^3 -2*s^2 +5*s -16;
>> C = A + B
C =
s^4+s^3+4*s-14-2*s^2

Note that the result is correct, although it is not in form the we prefer, as the terms are not
ordered in decreasing powers of s.

• Scalar multiple:

>> syms s
>> A = s^4 -3*s^3 -s +2;
>> C = 3*A
C =
3*s^4-9*s^3-3*s+6

• Multiplication:

>> syms s
>> A = s+2;
>> B = s+3;
>> C = A*B

253



C =
(s+2)*(s+3)
>> C = expand(C)
C =
s^2+5*s+6

• Factoring:

>> syms s
>> D = s^2 + 6*s + 9;
>> D = factor(D)
D =
(s+3)^2
>> P = s^3 - 2*s^2 -3*s + 10;
>> P = factor(P)
P =
(s+2)*(s^2-4*s+5)

• Common denominator: Consider the expression

H(s) = − 1/6
s + 3

− 1/2
s + 1

+
2/3
s

This can be expressed as a ratio of polynomials by finding the common denominator for the
three terms, as follows:

>> syms s
>> H = -(1/6)/(s+3) -(1/2)/(s+1) +(2/3)/s;
>> [N,D] = numden(H)
N =
s+2
D =
(s+3)*(s+1)*s
>> D = expand(D)
D =
s^3+4*s^2+3*s

Thus, H(s) can be expressed in the form

H(s) =
s + 2

s3 + 4s2 + 3s

As a second example, consider

G(s) = s + 4 +
2

s + 4
+

3
s + 2

Manipulating with Matlab:

254



>> syms s
>> G = s+4 + 2/(s+4) + 3/(s+2);
>> [N,D] = numden(G)
N =
s^3+10*s^2+37*s+48

D =
(s+4)*(s+2)
>> D = expand(D)
D =
s^2+6*s+8

Thus, G(s) can also be expressed in the form:

G(s) =
s3 + 10s2 + 37s + 48

s2 + 6s + 8

In this example, G(s) is an improper rational function.

• Cancellation of terms: For a ratio of polynomials, Matlab can be applied to see if any
terms cancel. For example

H(s) =
s3 + 2s2 + 5s + 10

s2 + 5

Applying Matlab:

>> syms s
>> H = (s^3 +2*s^2 +5*s +10)/(s^2 + 5);
>> H = simplify(H)
H =
s+2

Factoring the denominator shows why the cancellation occurs:

>> factor(s^3 +2*s^2 +5*s +10)
ans =
(s+2)*(s^2+5)

Thus,

H(s) = s + 2

• Variable substitution: Consider the ratio of polynomials

H(s) =
s + 3

s2 + 6s + 8

Define a second expression

G(s) = H(s)|s=s+2

Evaluating G(s) with Matlab:

255



>> syms s
>> H = (s+3)/(s^2 +6*s + 8);
>> G = subs(H,s,s+2)
G =
(s+5)/((s+2)^2+6*s+20)
>> G = collect(G)
G =
(s+5)/(s^2+10*s+24)

Thus

G(s) =
s + 5

s2 + 10s + 24

Commands are also provided to convert between the numeric representation of a polynomial as the
vector of its coefficients and the symbolic representation.

sym2poly(P) Converts from a symbolic polynomial P to a row vector containing the poly-
nomial coefficients.

poly2sym(p) Converts from a polynomial coefficient vector p to a symbolic polynomial in
the variable x. poly2sym(p,v) uses the symbolic the variable v.

For example, consider the polynomial

A(s) = s3 + 4s2 − 7s − 10

In Matlab:

>> a = [1 4 -7 -10];
>> A = poly2sym(a,s)
A =
s^3+4*s^2-7*s-10

For the polynomial

B(s) = 4s3 − 2s2 + 5s − 16

>> syms s
>> B = 4*s^3 -2*s^2 +5*s -16;
>> b = sym2poly(B)
b =

4 -2 5 -16

Forms of Expressions

As we have seen in some of the examples above, Matlab does not always arrange expressions in
the form that we would prefer. For example, Matlab expresses results in the form 1/a*b, while
we would prefer b/a. For example:

256



>> syms s
>> H = s^2 +6*s + 8;
>> G = -H/3
G =
-1/3*s^2-2*s-8/3

The result is G = −(1/3)s2 − 2s − 8/3, while we would prefer G = −(s2 + 6s + 8)/3.

13.2 Manipulating Trigonometric Expressions

Trigonometric expressions can also be manipulated symbolically in Matlab, primarily with the
use of the expand function. For example:

>> syms theta phi
>> A = sin(theta + phi)
A =
sin(theta+phi)
>> A = expand(A)
A =
sin(theta)*cos(phi)+cos(theta)*sin(phi)
>> B = cos(2*theta)
B =
cos(2*theta)
>> B = expand(B)
B =
2*cos(theta)^2-1
>> C = 6*((sin(theta))^2 + (cos(theta))^2)
C =
6*sin(theta)^2+6*cos(theta)^2
>> C = expand(C)
C =
6*sin(theta)^2+6*cos(theta)^2

Thus, Matlab was able to apply trigonometric identities to expressions A and B, but it was not
successful with C, as we know

C = 6(sin2(θ) + cos2(θ)) = 6

Matlab can also manipulate expressions involving complex exponential functions. For example:

>> syms theta real
>> A = real(exp(j*theta))
A =
1/2*exp(i*theta)+1/2*exp(-i*theta)

257



>> A = simplify(A)
A =
cos(theta)

13.3 Evaluating and Plotting Symbolic Expressions

In many applications, we eventually want to obtain numerical results or a plot from a symbolic
expression. The function double produces numerical results:

double(S) Converts the symbolic matrix expression S to a matrix of double
precision floating point numbers. S must not contain any symbolic
variables, except possibly eps.

Since the symbolic expression cannot contain any symbolic variables, it is necessary to use subs to
substitute numerical values for the symbolic variables prior to applying double. For example:

>> E = s^3 -14*s^2 +65*s -100;
>> F = subs(E,s,7.1)
F =
13671/1000
>> G = double(F)
G =

13.6710

The symbolic form is F and the numeric quantity is G, as confirmed by the display from whos:

>> whos
Name Size Bytes Class

E 1x1 162 sym object
F 1x1 144 sym object
G 1x1 8 double array
s 1x1 126 sym object

Grand total is 34 elements using 440 bytes

Symbolic expressions can be plotted with the Matlab function ezplot:

ezplot(f) Plots a graph of f(x) where f is a string or a symbolic expression
representing a mathematical expression involving a single symbolic
variable, say x. The default range of the x-axis is [−2π, 2π]

ezplot(f,xmin,xmax) Plots the graph using the specified x-range instead of the default
range.

258



For example consider plotting the polynomial function

A(s) = s3 + 4s2 − 7s − 10

over the range [−1, 3]:

syms s
a = [1 4 -7 -10];
A = poly2sym(a,s)
ezplot(A,-1,3), ylabel(’A(s)’)

The resulting plot is shown in Figure 13.3. Note that the expression plotted is automatically placed
at the top of the plot and that the axis label for the independent variable is automatically placed.
A ylabel command was used to label the dependent variable.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

20

25

30

35

s

s^3+4*s^2−7*s−10

A
(s

)

Figure 13.1: Plot of a polynomial function using ezplot

13.4 Solving Algebraic and Transcendental Equations

The symbolic math toolbox can be used to solve algebraic and transcendental equations, as well as
systems of such equations. A transcendental equation is one that contains one or more transcen-
dental functions, such as cos x, ex, or ln x.

The function used in solving these equations is solve. There are several forms of solve, but only
the following forms will be presented in these notes:

259



solve(E1, E2,...,EN)
solve(E1, E2,...,EN, var1, var2,...,varN)

where E1, E2,...,EN are the names of symbolic expressions and var1, var2,..., varN are vari-
ables in the expressions that have been declared to be symbolic. The solutions obtained are the
roots of the expressions; that is, symbolic expressions for the variables under the conditions E1 =
0, E2 = 0, . . . EN = 0.

For one equation and one variable, the resulting output solution is returned as a single symbolic
variable.

For example:

>> syms s
>> E = s+2;
>> s = solve(E)
s =
-2

For N equations, the N solutions are returned as a symbolic vector.

For example:

>> syms s
>> D = s^2 +6*s +9;
>> s = solve(D)
s =
[ -3]
[ -3]

Thus, the solution is the symbolic representation of the repeated real roots of the quadratic poly-
nomial, providing the same results as those obtained earlier in numeric representation using the
function roots. Complex roots can also be obtained, as shown in the following example:

>> syms s
>> P = s^3 -2*s^2 -3*s + 10;
>> s = solve(P)
s =
[ -2]
[ 2+i]
[ 2-i]

Similar results can be obtained in the solution of transcendental equations. An example in trigonom-
etry:

>> syms theta x z

260



>> E = z*cos(theta) - x;
>> theta = solve(E,theta)
theta =
acos(x/z)

For an example involving ex, consider the solution to e2x + 4ex = 32:

>> syms x
>> E = exp(2*x) + 4*exp(x) -32;
>> x = solve(E)
x =
[ log(-8)]
[ log(4)]
>> log(-8)
ans =

2.0794+ 3.1416i
>> log(4)
ans =

1.3863

Note that two solutions are provided, with the numeric results showing that the first solution
log(−8) = 2.0794 + 3.1416i is complex, while the second solution log(4) = 1.3863 is real. The issue
as to whether both of these solutions are meaningful would depend on the application that led to
the original equation.

Equations containing periodic functions can have an infinite number of solutions. In such cases,
solve restricts the search for solutions to the region near 0. For example, to solve the equation
cos(2θ) − sin(θ) = 0:

>> E = cos(2*theta)-sin(theta);
>> solve(E)
ans =
[ -1/2*pi]
[ 1/6*pi]
[ 5/6*pi]

Example 13.1 Positioning a robot arm

Consider again the application to robot motion that was presented in Section 10.4. The robot arm
has two joints and two links. The (x, y) coordinates of the hand are given by

x1 = L1 cos θ1 + L2 cos(θ1 + θ2)

x2 = L1 sin θ1 + L2 sin(θ1 + θ2)

261



where θ1 and θ2 are the joint angles and L1 = 4 feet and L2 = 3 feet are the link lengths. A part of
the previous solution that was not determined was the joint angles needed to position the hand at
a given set of coordinates. For the initial hand position of (x, y) = (6.5, 0), the following commands
determine the required angles:

>> syms theta1 theta2
>> E1 = 4*cos(theta1)+3*cos(theta1+theta2)-6.5;
>> E2 = 4*sin(theta1)+3*sin(theta1+theta2);
>> [theta1, theta2] = solve(E1,E2)
theta1 =
[ atan(9/197*55^(1/2))]
[ atan(-9/197*55^(1/2))]

theta2 =
[ -atan(3/23*55^(1/2))]
[ -atan(-3/23*55^(1/2))]
>> theta1 = double(theta1*(180/pi))
theta1 =

18.7170
-18.7170

>> theta2 = double(theta2*(180/pi))
theta2 =

-44.0486
44.0486

There are two solutions, given first in symbolic form, then converted into numeric form using
double. The first is θ1 = 18.717◦, θ2 = −44.0486◦, which is the “elbow up” solution. The second
is θ1 = −18.717◦, θ2 = 44.0486◦, the “elbow down” solution.

13.5 Calculus

Symbolic expressions can be differentiated and integrated to obtain closed form results.

Differentiation

The diff function, when applied to a symbolic expression, provides a symbolic derivative.

diff(E) Differentiates a symbolic expression E with respect to its free variable
as determined by findsym.

diff(E,v) Differentiates E with respect to symbolic variable v.

diff(E,n) Differentiates E n times for positive integer n.

diff(S,v,n) Differentiates E n times with respect to symbolic variable v.

262



Examples of derivatives of polynomial functions:

>> syms s n
>> p = s^3 + 4*s^2 -7*s -10;
>> d = diff(p)
d =
3*s^2+8*s-7
>> e = diff(p,2)
e =
6*s+8
>> f = diff(p,3)
f =
6
>> g = s^n;
>> h = diff(g)
h =
s^n*n/s
>> h = simplify(h)
h =
s^(n-1)*n

Examples of derivatives of transcendental functions:

>> syms x
>> f1 = log(x);
>> df1 = diff(f1)
df1 =
1/x
>> f2 = (cos(x))^2;
>> df2 = diff(f2)
df2 =
-2*cos(x)*sin(x)
>> f3 = sin(x^2);
>> df3 = diff(f3)
df3 =
2*cos(x^2)*x
>> df3 = simplify(df3)
df3 =
2*cos(x^2)*x
>> f4 = cos(2*x);
>> df4 = diff(f4)
df4 =
-2*sin(2*x)
>> f5 = exp(-(x^2)/2);
>> df5 = diff(f5)
df5 =
-x*exp(-1/2*x^2)

263



Min-Max Problems

The derivative can be used to find the maximum or minimum of a continuous function, say, f(x),
over an interval a ≤ x ≤ b. A local maximum or local minimum (one that does not occur at one
of the boundaries x = a or x = b) can occur only at a critical point, which is a point where either
df/dx = 0 or df/dx does not exist.

Example 13.2 Minimum cost tank design

Consider again the tank design problem that was solved numerically in Example 7.1. In this
problem, the tank radius is R, the height is H and the tank volume is such that

500 = πR2H +
2
3
πR3

The cost of the tank, a function of surface area, is

C = 300(2πRH) + 400(2πR2)

The problem is to solve for R and H providing the minimum cost tank providing the specified
volume. The symbolic approach is to solve the volume equation for H as a function of R, express
cost C symbolically, then differentiate C with respect to R and solve the resulting equation for R.

>> syms R H
>> V = pi*R^2*H + (2/3)*pi*R^3 -500; % Equation for volume
>> H = solve(V,H) % Solve volume for height H
H =
-2/3*(pi*R^3-750)/pi/R^2
>> C = 300*(2*pi*R*H) + 400*(2*pi*R^2); % Equation for cost
>> dCdR = diff(C,R) % Derivative of cost wrt R
dCdR =
400/R^2*(pi*R^3-750)+400*pi*R
>> Rmins = solve(dCdR,R) % Solve dC/dR for R: Rmin
Rmins =
[ 5/pi*3^(1/3)*(pi^2)^(1/3)]
[ -5/2/pi*3^(1/3)*(pi^2)^(1/3)+5/2*i*3^(5/6)/pi*(pi^2)^(1/3)]
[ -5/2/pi*3^(1/3)*(pi^2)^(1/3)-5/2*i*3^(5/6)/pi*(pi^2)^(1/3)]
>> Rmins = double(Rmins)
Rmin =

4.9237
-2.4619+ 4.2641i
-2.4619- 4.2641i

>> Rmin = Rmins(1)
Rmin =

4.9237

264



>> Hmin = double(subs(H,R,Rmin))
Hmin =

3.2825
>> Cmin = double(subs(C,{R,H},{Rmin,Hmin}))
Cmin =

9.1394e+004

Note that there are three symbolic solutions for R to provide minimum cost (Rmins). Converting
these solutions to numeric quantities with double, we see that the second and third solutions are
complex, which are not physically meaningful. Thus, we choose Rmin to be Rmins(1) and we
compute Hmin and Cmin from this value. These symbolic results obtained here are more accurate
than those determined previously in Example 7.1, as there has been no need to consider samples
of R and H at a limited resolution. However, note that the results determined by the two methods
are very close.

Integration

The int function, when applied to a symbolic expression, provides a symbolic integration.

int(E) Indefinite integral of symbolic expression E with respect to its sym-
bolic variable as defined by findsym. If E is a constant, the integral
is with respect to x.

int(E,v) Indefinite integral of E with respect to scalar symbolic variable v.

int(E,a,b) Definite integral of E with respect to its symbolic variable from a to
b, where a and b are each double or symbolic scalars.

int(E,v,a,b) Definite integral of E with respect to v from a to b.

Examples of integrals of polynomials:

>> syms x n a b t
>> int(x^n)
ans =
x^(n+1)/(n+1)
>> int(x^3 +4*x^2 + 7*x + 10)
ans =
1/4*x^4+4/3*x^3+7/2*x^2+10*x
>> int(x,1,t)
ans =
1/2*t^2-1/2
>> int(x^3,a,b)
ans =
1/4*b^4-1/4*a^4

Examples of integrals of transcendental functions:

265



>> syms x
>> int(1/x)
ans =
log(x)
>> int(cos(x))
ans =
sin(x)
>> int(1/(1+x^2))
ans =
atan(x)
>> int(exp(-x^2))
ans =
1/2*pi^(1/2)*erf(x)

The last integral above introduces the error function erf(x) for each element of x, where x is real.
The error function is defined as:

erf(x) =
2√
π

∫ x

0
e−t2dt

13.6 Linear Algebra

Operations on symbolic matrices can be performed in much the same way as with numeric matrices.

The following are examples of matrix inverse, product, and determinant.

>> A = sym([2,1; 4,3])
A =
[ 2, 1]
[ 4, 3]
>> Ainv = inv(A)
Ainv =
[ 3/2, -1/2]
[ -2, 1]
>> C = A*Ainv
C =
[ 1, 0]
[ 0, 1]
>> B = sym([1 3 0; -1 5 2; 1 2 1])
B =
[ 1, 3, 0]
[ -1, 5, 2]
[ 1, 2, 1]
>> detB = det(B)
detB =
10

266



Systems of linear equations can also be solved symbolically. Consider the following example that
was previously solved numerically:

>> syms x
>> A = sym([3 2 -1; -1 3 2; 1 -1 -1])
A =
[ 3, 2, -1]
[ -1, 3, 2]
[ 1, -1, -1]
>> b = sym([10; 5; -1])
b =
[ 10]
[ 5]
[ -1]
>> x = A\b
x =
[ -2]
[ 5]
[ -6]

The results are the same as those obtained numerically. For this problem, there is little advantage to
finding the result symbolically. However, solving a system of equations with respect to a parameter,
the symbolic approach provides an advantage. Consider the following set of equations

2x1 − 3x2 = 3
5x1 + cx2 = 19

To solve for x1 and x2 as functions of the parameter c:

>> syms c
>> A = sym([2 -3; 5 c]);
>> b = sym([3; 19]);
>> x = A\b
x =
[ 3*(19+c)/(2*c+15)]
[ 23/(2*c+15)]

267


	Section 12 - Strings, Time, Base Conversion and
Bit Operations
	Section 13 - Symbolic Processing

